
Microcontrollers and Applications

1

Microcontrollers and Application Notes for VI Sem ECE

Department of Electronics and Communication Engineering,

Microcontrollers and Applications

2

SYLLABUS

MALLA REDDY ENGINEERING COLLEGE (Autonomous)

MICROCONTROLLERS AND APPLICATIONS

Course Objective:

This course introduces the architecture of 8051 Microcontroller, the instruction set of 8051, real-time

interrupts, real time Timers and interfacing with 8051 Microcontroller.

MODULE I: 8051 Microcontroller [8 Periods]

Introduction, Architecture ofa 8051 microcontroller: Internal and External memories – Counters and Timers –

Synchronous serial communication, asynchronous serial communication – Interrupts, I/O Ports, signal

description of 8051.

MODULE II: Instruction Set of 8051 [10 Periods]

Basic assembly language programming – Data transfer instructions – Data and Bit manipulation instructions –

Arithmetic instructions – Logical operations, Internal RAM, and SFRs – Program flow control instructions –

Interrupt control flow.

MODULE III: Real-Time Control - Interrupts [12 Periods]

A: Interrupt handling structure of an MCU – Interrupt Latency and Interrupt deadline – Multiple sources of

the interrupts – Non-maskable interrupt sources

B: Enabling or disabling of the sources – Polling to determine the interrupt source and assignment of the

priorities among them – Interrupt structure in Intel 8051.

MODULE IV: Real-Time Control – Timers [8 Periods]

Programmable Timers in the MCU’s – Free running counter and real time control – Interrupt interval and

density constraints, watch dog timer.

MODULEV: Interfacing [10 Periods]

Switch and Keypad - LED and Array of LEDs - Seven Segment, LCD and its interfaces Stepper motor and

DC motor interfacing.

TEXT BOOKS:

1. Microcontrollers Architecture, Programming, Interfacing and System Design – Raj Kamal,Pearson

Education, 2005.

2. The 8051 Microcontroller and Embedded Systems – Mazidi and Mazidi, PHI, 2000.

REFERENCES:

1. Kenneth. J. Ayala, “The 8051 Microcontroller”, Cengage Learning, 3rd Edition, 2004.

2. Microcontrollers (Theory & Applications) – A.V. Deshmuk, WTMH, 2005.

3. Design with PIC Microcontrollers – John B. Peatman, Pearson Education, 2005.

E-RESOURCES:

1. https://www.edgefx.in/8051-microcontroller-architecture/

2. http://www.newagepublishers.com/samplechapter/002079.pdf

3. http://8051-microcontrollers.blogspot.in/2015/11/timers-and-counterstimers.html#.WYbVGLpuLIU
104

Microcontrollers and Applications

3

4. http://ymk.k-space.org/Lecture_Nov5.pdf

5. http://www.rtcmagazine.com/technologies/view/Microcontrollers

6. http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html

Course Outcomes:

At the end of the course, students will be able to:
1. Describe the basic architecture of 8051microcontroller

2. Write assembly language programs for 8051 microcontroller.

3. Know the interrupt handling techniques.

4. Know the usage of timers in real time applications.

5. Develop a microcontroller based system.

Microcontrollers and Applications

4

UNIT - 1

MICROPROCESSORS AND MICROCONTROLLERS

Microprocessor Microcontroller

Arithmetic and logic

unit

Accumulator

Working Registers

Program Counter Stack Pointer

Clock Circuit Interrupt circuit

ALU Timer/ IO Ports

Counter
Accumulator

Interrupt
Registers

Internal Circuits

Internal RAM ROM

Stack Pointer Clock

Program Counter

Block diagram of microprocessor Block diagram of microcontroller

Microprocessor contains ALU, General purpose

registers, stack pointer, program counter, clock

timing circuit, interrupt circuit

Microcontroller contains the circuitry of

microprocessor, and in addition it has built in ROM,

RAM, I/O Devices, Timers/Counters etc.

It has many instructions to move data between

memory and CPU

It has few instructions to move data between memory

and CPU

Few bit handling instruction It has many bit handling instructions

Less number of pins are multifunctional More number of pins are multifunctional

Single memory map for data and code

(program)

Separate memory map for data and code (program)

Access time for memory and IO are more Less access time for built in memory and IO.

Microprocessor based system requires

additional hardware

It requires less additional hardwares

More flexible in the design point of view Less flexible since the additional circuits which is

residing inside the microcontroller is fixed for a

particular microcontroller

Large number of instructions with flexible

addressing modes

Limited number of instructions with few

addressing modes

Microcontrollers and Applications

5

RISC AND CISC CPU ARCHITECTURES

Microcontrollers with small instruction set are called reduced instruction set computer (RISC) machines

and those with complex instruction set are called complex instruction set computer (CISC). Intel 8051 is an

example of CISC machine whereas microchip PIC 18F87X is an example of RISC machine.

RISC CISC

Instruction takes one or two cycles Instruction takes multiple cycles

Only load/store instructions are used to access

memory

In additions to load and store instructions, memory

access is possible with other instructions also.

Instructions executed by hardware Instructions executed by the micro program

Fixed format instruction Variable format instructions

Few addressing modes Many addressing modes

Few instructions Complex instruction set

Most of the have multiple register banks Single register bank

Highly pipelined Less pipelined

Complexity is in the compiler Complexity in the microprogram

Microcontrollers and Applications

6

HARVARD & VON- NEUMANN CPU ARCHITECTURE

Von-Neumann (Princeton architecture) Harvard architecture

CPU

Data

Address Bus

Program

Data

CPU
Address Bus

Data

Address Bus

Data

Memory Memory

Data

Program

Memory Memory

Von-Neumann (Princeton architecture) Harvard architecture

It uses single memory

instructions and data.

space for both It has separate program memory and data memory

It is not possible to fetch instruction code and data Instruction code and data

simultaneously

can be Fetched

Execution of instruction takes more machine cycle Execution of instruction takes less machine cycle

Uses CISC architecture Uses RISC architecture

Instruction pre-fetching is a main feature Instruction parallelism is a main feature

Also known as control flow or control driven

computers

Also known as data flow

computers

or data Driven

Simplifies the chip design because of single memory

space

Chip design is complex due to separate memory

space

Eg. 8085, 8086, MC6800 Eg. General purpose microcontrollers, special DSP

chips etc.

Microcontrollers and Applications

7

COMPUTER SOFTWARE

A set of instructions written in a specific sequence for the computer to solve a specific task is called a

program and software is a collection of such programs.

The program stored in the computer memory in the form of binary numbers is called machine instructions.

The machine language program is called object code.

An assembly language is a mnemonic representation of machine language. Machine language and assembly

language are low level languages and are processor specific.

The assembly language program the programmer enters is called source code. The source code (assembly

language) is translated to object code (machine language) using assembler.

Programs can be written in high level languages such as C, C++ etc. High level language will be converted

to machine language using compiler or interpreter. Compiler reads the entire program and translate into

the object code and then it is executed by the processor. Interpreter takes one statement of the high level

language as input and translate it into object code and then executes.

THE 8051 ARCHITECTURE

Introduction

Salient features of 8051 microcontroller are given below.

• Eight bit CPU

• On chip clock oscillator

• 4Kbytes of internal program memory (code memory) [ROM]

• 128 bytes of internal data memory [RAM]

• 64 Kbytes of external program memory address space.

• 64 Kbytes of external data memory address space.

• 32 bi directional I/O lines (can be used as four 8 bit ports or 32 individually addressable I/O lines)

• Two 16 Bit Timer/Counter :T0, T1

• Full Duplex serial data receiver/transmitter

• Four Register banks with 8 registers in each bank.

• Sixteen bit Program counter (PC) and a data pointer (DPTR)

• 8 Bit Program Status Word (PSW)

• 8 Bit Stack Pointer

• Five vector interrupt structure (RESET not considered as an interrupt.)

• 8051 CPU consists of 8 bit ALU with associated registers like accumulator ‘A’ , B register,

PSW, SP, 16 bit program counter, stack pointer.

• ALU can perform arithmetic and logic functions on 8 bit variables.

• 8051 has 128 bytes of internal RAM which is divided into

o Working registers [00 – 1F]

o Bit addressable memory area [20 – 2F]

o General purpose memory area (Scratch pad memory) [30-7F]

Microcontrollers and Applications

8

The 8051 architecture.

 E

ALE

PSEN

XTAL1

XTAL2

RESET

VCC

GND

• 8051 has 4 K Bytes of internal ROM. The address space is from 0000 to 0FFFh. If the program

size is more than 4 K Bytes 8051 will fetch the code automatically from external memory.

• Accumulator is an 8 bit register widely used for all arithmetic and logical operations. Accumulator

is also used to transfer data between external memory. B register is used along with Accumulator

for multiplication and division. A and B registers together is also called MATH registers.

PC

Port 1

SFR

General

RAM

PSW ALU

Port 0

SFR and

General Purpose RAM

System

Timing

System

timers

Data

buffers

Memory

control

Port 3

DPTR

DPH

DPL

ROM

Port 2

I/O

INT

CNTR

SERIA

L

RD/W

R

I/O

A8-

A1

5

I/O

I/O

A0-

A7

D0-

D7

General

purpose

area

Bit addressible

area

Register Bank 3

Register Bank 2

Register Bank 1

Register Bank 0

IE

IP

PCON

SBUF

SCON

TCON

TMOD

TL0

TH0

TL1

TH1

Microcontrollers and Applications

9

• PSW (Program Status Word). This is an 8 bit register which contains the arithmetic status of ALU

and the bank select bits of register banks.

CY AC F0 RS1 RS0 OV - P

CY - carry flag

AC - auxiliary carry flag

F0 - available to the user for general purpose

RS1,RS0 - register bank select bits

OV - overflow

P - parity

• Stack Pointer (SP) – it contains the address of the data item on the top of the stack. Stack may reside

anywhere on the internal RAM. On reset, SP is initialized to 07 so that the default stack will start

from address 08 onwards.

• Data Pointer (DPTR) – DPH (Data pointer higher byte), DPL (Data pointer lower byte). This is a

16 bit register which is used to furnish address information for internal and external program

memory and for external data memory.

• Program Counter (PC) – 16 bit PC contains the address of next instruction to be executed. On reset

PC will set to 0000. After fetching every instruction PC will increment by one.

 PIN DIAGRAM

Pinout Description

Pins 1-8 PORT 1. Each of these pins can be configured as an input or an output.

Pin 9 RESET. A logic one on this pin disables the microcontroller and clears the contents of most

registers. In other words, the positive voltage on this pin resets the microcontroller. By

applying logic zero to this pin, the program starts execution from the beginning.

Pins10-17 PORT 3. Similar to port 1, each of these pins can serve as general input or output. Besides,

all of them have alternative functions

Microcontrollers and Applications

10

Pin 10 RXD. Serial asynchronous communication input or Serial synchronous communication

output.

Pin 11 TXD. Serial asynchronous communication output or Serial synchronous

communication clock output.

Pin 12 INT0.External Interrupt 0 input

Pin 13 INT1. External Interrupt 1 input

Pin 14 T0. Counter 0 clock input

Pin 15 T1. Counter 1 clock input

Pin 16 WR. Write to external (additional) RAM

Pin 17 RD. Read from external RAM

Pin 18, 19 XTAL2, XTAL1. Internal oscillator input and output. A quartz crystal which specifies

operating frequency is usually connected to these pins.

Pin 20 GND. Ground.

Pin 21-28 Port 2. If there is no intention to use external memory then these port pins are configured as

general inputs/outputs. In case external memory is used, the higher address byte, i.e.

addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is

not used, which means that not all eight port bits are used for its addressing, the rest of them

are not available as inputs/outputs.

Pin 29 PSEN. If external ROM is used for storing program then a logic zero (0) appears on it every

time the microcontroller reads a byte from memory.

Pin 30 ALE. Prior to reading from external memory, the microcontroller puts the lower address byte

(A0-A7) on P0 and activates the ALE output. After receiving signal from the ALE pin, the

external latch latches the state of P0 and uses it as a memory chip address. Immediately after

that, the ALE pin is returned its previous logic state and P0 is now used as a Data Bus.

Pin 31 EA. By applying logic zero to this pin, P2 and P3 are used for data and address transmission

with no regard to whether there is internal memory or not. It means that even there is a

program written to the microcontroller, it will not be executed. Instead, the program written

to external ROM will be executed. By applying logic one to the EA pin, the microcontroller

will use both memories, first internal then external (if exists).

Pin 32-39 PORT 0. Similar to P2, if external memory is not used, these pins can be used as general

inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE pin is

driven high (1) or as data output (Data Bus) when the ALE pin is driven low (0).

Pin 40 VCC. +5V power supply.

Microcontrollers and Applications

11

 MEMORY ORGANIZATION

Internal RAM organization

2F

2E

2D

2C

2B

2A

29

28

27

26

25

24

23

22

21

20

Bit addressable memory

7F

7E

.

.

.

.

.

.

.

.

32

31

30

General purpose memory

Working Registers

Register Banks: 00h to 1Fh. The 8051 uses 8 general-purpose registers R0 through R7 (R0, R1, R2, R3,

R4, R5, R6, and R7). There are four such register banks. Selection of register bank can be done through

RS1,RS0 bits of PSW. On reset, the default Register Bank 0 will be selected.

Bit Addressable RAM: 20h to 2Fh . The 8051 supports a special feature which allows access to bit

variables. This is where individual memory bits in Internal RAM can be set or cleared. In all there are 128

bits numbered 00h to 7Fh. Being bit variables any one variable can have a value 0 or 1. A bit variable can

be set with a command such as SETB and cleared with a command such as CLR. Example instructions

are:

SETB 25h ; sets the bit 25h (becomes 1)

CLR 25h ; clears bit 25h (becomes 0)

Note, bit 25h is actually bit 5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h and 2Fh.

General Purpose RAM: 30h to 7Fh. Even if 80 bytes of Internal RAM memory are available for

general-purpose data storage, user should take care while using the memory location from 00 -2Fh

B
A

N
K

0

B

A
N

K

1

B

A
N

K

2

B
A

N
K

3

R7 1F

R6 1E
R5 1D

R4 1C

R3 1B
R2 1A

R1 19

R0 18

R7 17
R6 16

R5 15
R4 14

R3 13

R2 12

R1 11

R0 10

R7 0F
R6 0E

R5 0D

R4 0C

R3 0B
R2 0A

R1 09

R0 08

R7 07
R6 06

R5 05

R4 04

R3 03

R2 02

R1 01
R0 00

7F 78

77 70

6F 68

67 60

5F 58

57 50

4F 48

47 40

3F 38

37 30

2F 28

27 20

1F 18

17 10

0F 08

07 00

Microcontrollers and Applications

12

since these locations are also the default register space, stack space, and bit addressable space. It is a good

practice to use general purpose memory from 30 – 7Fh. The general purpose RAM can be accessed using

direct or indirect addressing modes.

 EXTERNAL MEMORY INTERFACING

Eg. Interfacing of 16 K Byte of RAM and 32 K Byte of EPROM to 8051

Number of address lines required for 16 Kbyte memory is 14 lines and that of 32Kbytes of memory is 15

lines.

The connections of external memory is shown below.

The lower order address and data bus are multiplexed. De-multiplexing is done by the latch. Initially the

address will appear in the bus and this latched at the output of latch using ALE signal. The output of the

latch is directly connected to the lower byte address lines of the memory. Later data will be available in this

bus. Still the latch output is address it self. The higher byte of address bus is directly connected to the

memory. The number of lines connected depends on the memory size.

The RD and WR (both active low) signals are connected to RAM for reading and writing the data.

PSEN of microcontroller is connected to the output enable of the ROM to read the data from the memory.

EA (active low) pin is always grounded if we use only external memory. Otherwise, once the program size

exceeds internal memory the microcontroller will automatically switch to external memory.

A13

PSEN
A14

A13

A12

A8

A0-A7 A0-A7

32 Kbyte

. RAM

.

A3

A2

A1

A0

LOWER BYTE

ADDRESS

GND [AD0 – AD7] DAT

A

O/P

DAT

A

O/P

DATA BUS [AD0 – AD7]

..

A1

A0

16 Kbyte

RAM

WE

OE

A7

A12

..

LE

PSEN

A12

…

A9

A8
WR
RD
AL

8051

EA

AD0

-

AD7

Microcontrollers and Applications

13

 STACK

A stack is a last in first out memory. In 8051 internal RAM space can be used as stack. The address of the

stack is contained in a register called stack pointer. Instructions PUSH and POP are used for stack

operations. When a data is to be placed on the stack, the stack pointer increments before storing the data on

the stack so that the stack grows up as data is stored (pre-increment). As the data is retrieved from the stack

the byte is read from the stack, and then SP decrements to point the next available byte of stored data (post

decrement). The stack pointer is set to 07 when the 8051 resets. So that default stack memory starts from

address location 08 onwards (to avoid overwriting the default register bank ie., bank 0).

Eg; Show the stack and SP for the following.

MOV R6,

#25H MOV

R1, #12H
MOV R4, #0F3H

[SP]=07

[R6]=25H

[R1]=12H
[R4]=F3H

//CONTENT OF SP IS 07 (DEFAULT VALUE)

//CONTENT OF R6 IS 25H

//CONTENT OF R1 IS 12H

//CONTENT OF R4 IS F3H

PUSH 6

[SP]=08

[08]=[06]=25H

//CONTENT OF 08 IS 25H

PUSH 1 [SP]=09 [09]=[01]=12H //CONTENT OF 09 IS 12H

PUSH 4 [SP]=0A [0A]=[04]=F3H //CONTENT OF 0A IS F3H

POP 6

[06]=[0A]=F3H

[SP]=09 //CONTENT OF 06 IS F3H

POP 1 [01]=[09]=12H [SP]=08 //CONTENT OF 01 IS 12H

POP 4 [04]=[08]=25H [SP]=07 //CONTENT OF 04 IS 25H

Counters and Timers:

A timer is a specialized type of clock which is used to measure time intervals. A timer that counts from

zero upwards for measuring time elapsed is often called a stopwatch. It is a device that counts down from

a specified time interval and used to generate a time delay, for example, an hourglass is a timer.

A counter is a device that stores (and sometimes displays) the number of times a particular event or

process occurred, with respect to a clock signal. It is used to count the events happening outside the

microcontroller. In electronics, counters can be implemented quite easily using register-type circuits such

as a flip-flop.

Difference between a Timer and a Counter

The points that differentiate a timer from a counter are as follows −

Timer Counter

The register incremented for

every machine cycle.

The register is incremented considering 1 to

0 transition at its corresponding to an

external input pin (T0, T1).

Maximum count rate is 1/12 of Maximum count rate is 1/24 of the oscillator

Microcontrollers and Applications

14

the oscillator frequency. frequency.

A timer uses the frequency of

the internal clock, and

generates delay.

A counter uses an external signal to count

pulses.

Timers of 8051 and their Associated Registers

The 8051 has two timers, Timer 0 and Timer 1. They can be used as timers or as event counters. Both

Timer 0 and Timer 1 are 16-bit wide. Since the 8051 follows an 8-bit architecture, each 16 bit is accessed

as two separate registers of low-byte and high-byte.

Timer 0 Register

The 16-bit register of Timer 0 is accessed as low- and high-byte. The low-byte register is called TL0

(Timer 0 low byte) and the high-byte register is called TH0 (Timer 0 high byte). These registers can be

accessed like any other register. For example, the instruction MOV TL0, #4H moves the value into the

low-byte of Timer #0.

Timer 1 Register

The 16-bit register of Timer 1 is accessed as low- and high-byte. The low-byte register is called TL1

(Timer 1 low byte) and the high-byte register is called TH1 (Timer 1 high byte). These registers can be

accessed like any other register. For example, the instruction MOV TL1, #4H moves the value into the

low-byte of Timer 1.

TMOD (Timer Mode) Register

Both Timer 0 and Timer 1 use the same register to set the various timer operation modes. It is an 8-bit

register in which the lower 4 bits are set aside for Timer 0 and the upper four bits for Timers. In each case,

the lower 2 bits are used to set the timer mode in advance and the upper 2 bits are used to specify the

location.

Microcontrollers and Applications

15

Gate − When set, the timer only runs while INT(0,1) is high.

C/T − Counter/Timer select bit.

M1 − Mode bit 1.

M0 − Mode bit 0.

GATE

Every timer has a means of starting and stopping. Some timers do this by software, some by hardware,

and some have both software and hardware controls. 8051 timers have both software and hardware

controls. The start and stop of a timer is controlled by software using the instruction SETB TR1 and CLR

TR1 for timer 1, and SETB TR0 and CLR TR0 for timer 0.

The SETB instruction is used to start it and it is stopped by the CLR instruction. These instructions start

and stop the timers as long as GATE = 0 in the TMOD register. Timers can be started and stopped by an

external source by making GATE = 1 in the TMOD register.

C/T (CLOCK / TIMER)

This bit in the TMOD register is used to decide whether a timer is used as a delay generator or an event

manager. If C/T = 0, it is used as a timer for timer delay generation. The clock source to create the time

delay is the crystal frequency of the 8051. If C/T = 0, the crystal frequency attached to the 8051 also

decides the speed at which the 8051 timer ticks at a regular interval.

Timer frequency is always 1/12th of the frequency of the crystal attached to the 8051. Although various

8051 based systems have an XTAL frequency of 10 MHz to 40 MHz, we normally work with the XTAL

frequency of 11.0592 MHz. It is because the baud rate for serial communication of the 8051.XTAL =

11.0592 allows the 8051 system to communicate with the PC with no errors.

M1 / M2

M1 M2 Mode

0 0 13-bit timer mode.

0 1 16-bit timer mode.

1 0 8-bit auto reload mode.

Microcontrollers and Applications

16

1 1 Spilt mode.

Different Modes of Timers

Mode 0 (13-Bit Timer Mode)

Both Timer 1 and Timer 0 in Mode 0 operate as 8-bit counters (with a divide-by-32 prescaler). Timer

register is configured as a 13-bit register consisting of all the 8 bits of TH1 and the lower 5 bits of TL1.

The upper 3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TR1) does not clear

the register. The timer interrupt flag TF1 is set when the count rolls over from all 1s to all 0s. Mode 0

operation is the same for Timer 0 as it is for Timer 1.

Mode 1 (16-Bit Timer Mode)

Timer mode "1" is a 16-bit timer and is a commonly used mode. It functions in the same way as 13-bit

mode except that all 16 bits are used. TLx is incremented starting from 0 to a maximum 255. Once the

value 255 is reached, TLx resets to 0 and then THx is incremented by 1. As being a full 16-bit timer, the

timer may contain up to 65536 distinct values and it will overflow back to 0 after 65,536 machine cycles.

 If a value, say YYXXH, is loaded into the Timer bytes, then the delay produced by the Timer will

be equal to the product :

[(FFFFH – YYXXH +1) x (period of one timer clock)].

It can also be considered as follows: convert YYXXH into decimal, say NNNNN, then delay will be equal

to the product :

[(65536-NNNNN) x (period of one timer clock)].

The period of one timer clock is 1.085 µs for a crystal of 11.0592 MHz frequency as discussed above.

Now to produce a desired delay, divide the required delay by the Timer clock period. Assume that the

division yields a number NNNNN. This is the number of times Timer must be updated before it stops.

Subtract this number from 65536 (binary equivalent of FFFFH) and convert the difference into hex. This

will be the initial value to be loaded into the Timer to get the desired delay.

Mode 2 (8 Bit Auto Reload)

Both the timer registers are configured as 8-bit counters (TL1 and TL0) with automatic reload. Overflow

from TL1 (TL0) sets TF1 (TF0) and also reloads TL1 (TL0) with the contents of Th1 (TH0), which is

preset by software. The reload leaves TH1 (TH0) unchanged.

The benefit of auto-reload mode is that you can have the timer to always contain a value from 200 to 255.

If you use mode 0 or 1, you would have to check in the code to see the overflow and, in that case, reset

the timer to 200. In this case, precious instructions check the value and/or get reloaded. In mode 2, the

microcontroller takes care of this. Once you have configured a timer in mode 2, you don't have to worry

about checking to see if the timer has overflowed, nor do you have to worry about resetting the value

because the microcontroller hardware will do it all for you. The auto-reload mode is used for establishing

a common baud rate.

Mode 3 (Split Timer Mode)

Timer mode "3" is known as split-timer mode. When Timer 0 is placed in mode 3, it becomes two

separate 8-bit timers. Timer 0 is TL0 and Timer 1 is TH0. Both the timers count from 0 to 255 and in case

of overflow, reset back to 0. All the bits that are of Timer 1 will now be tied to TH0.

Microcontrollers and Applications

17

When Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be set in modes 0, 1 or 2, but it

cannot be started/stopped as the bits that do that are now linked to TH0. The real timer 1 will be

incremented with every machine cycle.

Initializing a Timer

Decide the timer mode. Consider a 16-bit timer that runs continuously, and is independent of any external

pins.

Initialize the TMOD SFR. Use the lowest 4 bits of TMOD and consider Timer 0. Keep the two bits, GATE

0 and C/T 0, as 0, since we want the timer to be independent of the external pins. As 16-bit mode is timer

mode 1, clear T0M1 and set T0M0. Effectively, the only bit to turn on is bit 0 of TMOD. Now execute

the following instruction −

MOV TMOD,#01h

Now, Timer 0 is in 16-bit timer mode, but the timer is not running. To start the timer in running mode, set

the TR0 bit by executing the following instruction −

SETB TR0

Now, Timer 0 will immediately start counting, being incremented once every machine cycle.

Reading a Timer

A 16-bit timer can be read in two ways. Either read the actual value of the timer as a 16-bit number, or

you detect when the timer has overflowed.

Detecting Timer Overflow

When a timer overflows from its highest value to 0, the microcontroller automatically sets the TFx bit in

the TCON register. So instead of checking the exact value of the timer, the TFx bit can be checked. If TF0

is set, then Timer 0 has overflowed; if TF1 is set, then Timer 1 has overflowed.

Synchronous and Asynchronous serial communication:

DATA COMMUNICATION

The 8051 microcontroller is parallel device that transfers eight bits of data simultaneously over eight

data lines to parallel I/O devices. Parallel data transfer over a long is very expensive. Hence, a serial

communication is widely used in long distance communication. In serial data communication, 8-bit data is

converted to serial bits using a parallel in serial out shift register and then it is transmitted over a single data

line. The data byte is always transmitted with least significant bit first.

 BASICS OF SERIAL DATA COMMUNICATION,

Communication Links

1. Simplex communication link: In simplex transmission, the line is dedicated for transmission. The

transmitter sends and the receiver receives the data.

2. Half duplex communication link: In half duplex, the communication link can be used for either

transmission or

reception. Data is transmitted in only one direction at a time.

Transmitter Receiver

Microcontrollers and Applications

18

 Receiver

 Transmitter

3. Full duplex communication link: If the data is transmitted in both ways at the same time, it is a full duplex

i.e. transmission and reception can proceed simultaneously. This communication link requires two wires

for data, one for transmission and one for reception.

Types of Serial communication:

Serial data communication uses two types of communication.

1. Synchronous serial data communication: In this transmitter and receiver are synchronized. It uses a common

clock to synchronize the receiver and the transmitter. First the synch character is sent and then the data is

transmitted. This format is generally used for high speed transmission. In Synchronous serial data

communication a block of data is transmitted at a time.

Receiver

Transmitter

Sync

Transmitter Receiver

Receiver Transmitter

Transmitter Receiver

Microcontrollers and Applications

19

Data

Clock

2. Asynchronous Serial data transmission: In this, different clock sources are used for transmitter and receiver.

In this mode, data is transmitted with start and stop bits. A transmission begins with start bit, followed by

data and then stop bit. For error checking purpose parity bit is included just prior to stop bit. In

Asynchronous serial data communication a single byte is transmitted at a time.

 Data

Clock 1 Clock2

Baud rate:

The rate at which the data is transmitted is called baud or transfer rate. The baud rate is the reciprocal of

the time to send one bit. In asynchronous transmission, baud rate is not equal to number of bits per second.

This is because; each byte is preceded by a start bit and followed by parity and stop bit. For example, in

synchronous transmission, if data is transmitted with 9600 baud, it means that 9600 bits are transmitted in

one second. For bit transmission time = 1 second/ 9600 = 0.104 ms.

8051 SERIAL COMMUNICATION

The 8051 supports a full duplex serial port.

Three special function registers support serial communication.

1. SBUF Register: Serial Buffer (SBUF) register is an 8-bit register. It has separate SBUF registers

for data transmission and for data reception. For a byte of data to be transferred via the TXD line,

it must be placed in SBUF register. Similarly, SBUF holds the 8-bit data received by the RXD pin

and read to accept the received data.

2. SCON register: The contents of the Serial Control (SCON) register are shown below. This register

contains mode selection bits, serial port interrupt bit (TI and RI) and also the ninth data bit for

transmission and reception (TB8 and RB8).

 Start D0 D1 D2 D3 D4 D5 D6 D7 D8 Stop

Transmitter Receiver

Microcontrollers and Applications

20

3. PCON register: The SMOD bit (bit 7) of PCON register controls the baud rate in asynchronous

mode transmission.

 SERIAL COMMUNICATION MODES

1. Mode 0

In this mode serial port runs in synchronous mode. The data is transmitted and received through

RXD pin and TXD is used for clock output. In this mode the baud rate is 1/12 of clock frequency.

2. Mode 1

In this mode SBUF becomes a 10 bit full duplex transceiver. The ten bits are 1 start bit, 8 data bit

and 1 stop bit. The interrupt flag TI/RI will be set once transmission or reception is over. In this

mode the baud rate is variable and is determined by the timer 1 overflow rate. Baud rate =

 [2smod/32] x Timer 1 overflow Rate

= [2smod/32] x [Oscillator Clock Frequency] / [12 x [256 – [TH1]]]

3. Mode 2

This is similar to mode 1 except 11 bits are transmitted or received. The 11 bits are, 1 start bit, 8

data bit, a programmable 9th data bit, 1 stop bit.

Baud rate = [2smod/64] x Oscillator Clock Frequency

Microcontrollers and Applications

21

4. Mode 3

This is similar to mode 2 except baud rate is calculated as in mode 1

 CONNECTIONS TO RS-232

RS-232 standards:

To allow compatibility among data communication equipment made by various manufactures, an

interfacing standard called RS232 was set by the Electronics Industries Association (EIA) in 1960. Since

the standard was set long before the advent of logic family, its input and output voltage levels are not TTL

compatible.

In RS232, a logic one (1) is represented by -3 to -25V and referred as MARK while logic zero

(0) is represented by +3 to +25V and referred as SPACE. For this reason to connect any RS232 to a

microcontroller system we must use voltage converters such as MAX232 to convert the TTL logic level to

RS232 voltage levels and vice-versa. MAX232 IC chips are commonly referred as line drivers.

In RS232 standard we use two types of connectors. DB9 connector or DB25 connector.

DB9 Male Connector DB25 Male Connector

The pin description of DB9 and DB25 Connectors are as follows

The 8051 connection to MAX232 is as follows.

The 8051 has two pins that are used specifically for transferring and receiving data serially. These two pins

are called TXD, RXD. Pin 11 of the 8051 (P3.1) assigned to TXD and pin 10 (P3.0) is designated as RXD.

These pins TTL compatible; therefore they require line driver (MAX 232) to make them RS232 compatible.

MAX 232 converts RS232 voltage levels to TTL voltage levels and vice versa. One advantage of the

MAX232 is that it uses a +5V power source which is the same as the source voltage for the 8051. The

typical connection diagram between MAX 232 and 8051 is shown below.

Microcontrollers and Applications

22

 SERIAL COMMUNICATION PROGRAMMING IN ASSEMBLY AND C.

Steps to programming the 8051 to transfer data serially

1. The TMOD register is loaded with the value 20H, indicating the use of the Timer 1 in

mode 2 (8-bit auto reload) to set the baud rate.

2. The TH1 is loaded with one of the values in table 5.1 to set the baud rate for serial data

transfer.

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-bit

data is framed with start and stop bits.

4. TR1 is set to 1 start timer 1.

5. TI is cleared by the “CLR TI” instruction.

6. The character byte to be transferred serially is written into the SBUF register.

7. The TI flag bit is monitored with the use of the instruction JNB TI, target to see if the

character has been transferred completely.

8. To transfer the next character, go to step 5.

Example 1. Write a program for the 8051 to transfer letter ‘A’ serially at 4800- baud rate, 8 bit data, 1 stop

bit continuously.

ORG 0000H

LJMP

START

ORG 0030H

START: MOV TMOD, #20H ; select timer 1 mode 2

MOV TH1, #0FAH ; load count to get baud rate of 4800

MOV SCON, #50H ; initialize UART in mode 2

; 8 bit data and 1 stop bit

SETB TR1 ; start timer

AGAIN: MOV SBUF, #'A' ; load char ‘A’ in SBUF

BACK: JNB TI, BACK ; Check for transmit interrupt flag

CLR TI ; Clear transmit interrupt flag

SJMP AGAIN

END

Example 2. Write a program for the 8051 to transfer the message ‘EARTH’ serially at 9600 baud, 8 bit

data, 1 stop bit continuously.

ORG 0000H

LJMP

Microcontrollers and Applications

23

START

Microcontrollers and Applications

24

ORG 0030H

START: MOV TMOD, #20H ; select timer 1 mode 2

MOV TH1, #0FDH ; load count to get reqd. baud rate of 9600

MOV SCON, #50H ; initialise uart in mode 2

; 8 bit data and 1 stop bit

SETB TR1 ; start timer

LOOP: MOV A, #'E' ; load 1st letter ‘E’ in a

ACALL LOAD ; call load subroutine

MOV A, #'A' ; load 2nd letter ‘A’ in a

ACALL LOAD ; call load subroutine

MOV A, #'R' ; load 3rd letter ‘R’ in a

ACALL LOAD ; call load subroutine

MOV A, #'T' ; load 4th letter ‘T’ in a

ACALL LOAD ; call load subroutine

MOV A, #'H' ; load 4th letter ‘H’ in a

ACALL LOAD ; call load subroutine

SJMP LOOP ; repeat steps

LOAD: MOV SBUF, A

HERE: JNB TI, HERE ; Check for transmit interrupt flag

CLR TI ; Clear transmit interrupt flag

RET

END

Interrupts:

An interrupt is a signal to the processor emitted by hardware or software indicating an event that needs

immediate attention. Whenever an interrupt occurs, the controller completes the execution of the current

instruction and starts the execution of an Interrupt Service Routine (ISR) or Interrupt Handler. ISR

tells the processor or controller what to do when the interrupt occurs. The interrupts can be either hardware

interrupts or software interrupts.

Hardware Interrupt

A hardware interrupt is an electronic alerting signal sent to the processor from an external device, like a

disk controller or an external peripheral. For example, when we press a key on the keyboard or move the

mouse, they trigger hardware interrupts which cause the processor to read the keystroke or mouse position.

Software Interrupt

A software interrupt is caused either by an exceptional condition or a special instruction in the instruction

set which causes an interrupt when it is executed by the processor. For example, if the processor's

arithmetic logic unit runs a command to divide a number by zero, to cause a divide-by-zero exception,

thus causing the computer to abandon the calculation or display an error message. Software interrupt

instructions work similar to subroutine calls.

What is Polling?

Microcontrollers and Applications

25

The state of continuous monitoring is known as polling. The microcontroller keeps checking the status of

other devices; and while doing so, it does no other operation and consumes all its processing time for

monitoring. This problem can be addressed by using interrupts.

In the interrupt method, the controller responds only when an interruption occurs. Thus, the controller is

not required to regularly monitor the status (flags, signals etc.) of interfaced and inbuilt devices.

Interrupts v/s Polling

Here is an analogy that differentiates an interrupt from polling −

Interrupt Polling

An interrupt is like a shopkeeper.

If one needs a service or product,

he goes to him and apprises him of

his needs. In case of interrupts,

when the flags or signals are

received, they notify the controller

that they need to be serviced.

The polling method is like

a salesperson. The salesman goes from

door to door while requesting to buy a

product or service. Similarly, the

controller keeps monitoring the flags or

signals one by one for all devices and

provides service to whichever

component that needs its service.

Interrupt Service Routine

For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. When an

interrupt occurs, the microcontroller runs the interrupt service routine. For every interrupt, there is a fixed

location in memory that holds the address of its interrupt service routine, ISR. The table of memory

locations set aside to hold the addresses of ISRs is called as the Interrupt Vector Table.

Microcontrollers and Applications

26

Interrupt Vector Table

There are six interrupts including RESET in 8051.

Interrupts ROM Location (Hex) Pin

Serial COM (RI and TI) 0023

Timer 1 interrupts(TF1) 001B

External HW interrupt 1 (INT1) 0013 P3.3 (13)

External HW interrupt 0 (INT0) 0003 P3.2 (12)

Timer 0 (TF0) 000B

Reset 0000 9

• When the reset pin is activated, the 8051 jumps to the address location 0000. This is power-up

reset.

• Two interrupts are set aside for the timers: one for timer 0 and one for timer 1. Memory locations

are 000BH and 001BH respectively in the interrupt vector table.

• Two interrupts are set aside for hardware external interrupts. Pin no. 12 and Pin no. 13 in Port 3

are for the external hardware interrupts INT0 and INT1, respectively. Memory locations are 0003H

and 0013H respectively in the interrupt vector table.

• Serial communication has a single interrupt that belongs to both receive and transmit. Memory

location 0023H belongs to this interrupt.

Steps to Execute an Interrupt

When an interrupt gets active, the microcontroller goes through the following steps −

• The microcontroller closes the currently executing instruction and saves the address of the next

instruction (PC) on the stack.

• It also saves the current status of all the interrupts internally (i.e., not on the stack).

• It jumps to the memory location of the interrupt vector table that holds the address of the interrupts

service routine.

• The microcontroller gets the address of the ISR from the interrupt vector table and jumps to it. It

starts to execute the interrupt service subroutine, which is RETI (return from interrupt).

Microcontrollers and Applications

27

• Upon executing the RETI instruction, the microcontroller returns to the location where it was

interrupted. First, it gets the program counter (PC) address from the stack by popping the top bytes

of the stack into the PC. Then, it start to execute from that address.

Edge Triggering vs. Level Triggering

Interrupt modules are of two types − level-triggered or edge-triggered.

Level Triggered Edge Triggered

A level-triggered interrupt module

always generates an interrupt

whenever the level of the interrupt

source is asserted.

An edge-triggered interrupt module generates an

interrupt only when it detects an asserting edge of

the interrupt source. The edge gets detected when

the interrupt source level actually changes. It can

also be detected by periodic sampling and detecting

an asserted level when the previous sample was de-

asserted.

If the interrupt source is still asserted

when the firmware interrupt handler

handles the interrupt, the interrupt

module will regenerate the interrupt,

causing the interrupt handler to be

invoked again.

Edge-triggered interrupt modules can be acted

immediately, no matter how the interrupt source

behaves.

Level-triggered interrupts are

cumbersome for firmware.

Edge-triggered interrupts keep the firmware's code

complexity low, reduce the number of conditions for

firmware, and provide more flexibility when

interrupts are handled.

Enabling and Disabling an Interrupt

Upon Reset, all the interrupts are disabled even if they are activated. The interrupts must be enabled using

software in order for the microcontroller to respond to those interrupts.

IE (interrupt enable) register is responsible for enabling and disabling the interrupt. IE is a bitaddressable

register.

Interrupt Enable Register

EA - ET2 ES ET1 EX1 ET0 EX0

• EA − Global enable/disable.

• - − Undefined.

• ET2 − Enable Timer 2 interrupt.

Microcontrollers and Applications

28

• ES − Enable Serial port interrupt.

• ET1 − Enable Timer 1 interrupt.

• EX1 − Enable External 1 interrupt.

• ET0 − Enable Timer 0 interrupt.

• EX0 − Enable External 0 interrupt.

To enable an interrupt, we take the following steps −

• Bit D7 of the IE register (EA) must be high to allow the rest of register to take effect.

• If EA = 1, interrupts will be enabled and will be responded to, if their corresponding bits in IE are

high. If EA = 0, no interrupts will respond, even if their associated pins in the IE register are high.

Interrupt Priority in 8051

We can alter the interrupt priority by assigning the higher priority to any one of the interrupts. This is

accomplished by programming a register called IP (interrupt priority).

The following figure shows the bits of IP register. Upon reset, the IP register contains all 0's. To give a

higher priority to any of the interrupts, we make the corresponding bit in the IP register high.

- - - - PT1 PX1 PT0 PX0

- IP.7 Not Implemented.

- IP.6 Not Implemented.

- IP.5 Not Implemented.

- IP.4 Not Implemented.

PT1 IP.3 Defines the Timer 1 interrupt priority level.

PX1 IP.2 Defines the External Interrupt 1 priority level.

PT0 IP.1 Defines the Timer 0 interrupt priority level.

PX0 IP.0 Defines the External Interrupt 0 priority level.

Interrupt inside Interrupt

What happens if the 8051 is executing an ISR that belongs to an interrupt and another one gets active? In

such cases, a high-priority interrupt can interrupt a low-priority interrupt. This is known as interrupt

Microcontrollers and Applications

29

inside interrupt. In 8051, a low-priority interrupt can be interrupted by a high-priority interrupt, but not

by any another low-priority interrupt.

Triggering an Interrupt by Software

There are times when we need to test an ISR by way of simulation. This can be done with the simple

instructions to set the interrupt high and thereby cause the 8051 to jump to the interrupt vector table. For

example, set the IE bit as 1 for timer 1. An instruction SETB TF1 will interrupt the 8051 in whatever it

is doing and force it to jump to the interrupt vector table.

I/O Ports:

8051 microcontroller have 4 I/O ports each of 8-bit, which can be configured as input or output. Hence,
total 32 I/O pins allows the microcontroller to be connected with the peripheral devices.

1) PORT 0

P0 can be used as a bidirectional I/O port or it can be used for address/data connected for accessing

external memory. When control is 1 the port is used for address or data interfacing. When the control is 0

then the port can be used as a bidirectional I/O port.

Fig: Structure of port 0 pin

PORT 0 as an Input Port

If the control is 0 then the port is used as an input port and 1 is written to the latch. In this type of

situation both the output MOSFETs are off. Since the output pin has floats therefore, whatever data

written on pin is directly read by read pin.

PORT 0 as an Output Port

If we want to write 1 on pin of P0, a '1' written to the latch which turns 'off' the lower FET while due to

'0' control signal upper FET also turns off.

Suppose we want to write '0' on pin of port 0, when '0' is written to the latch, the pin is pulled down

by the lower FET. Hence the output becomes zero.

Microcontrollers and Applications

30

2) PORT 1

PORT 1 is dedicated only for I/O interfacing. When used as an output port, not needed to connect

additional pull-up resistor like port 0.

To use PORT 1 as an input port '1' has to be written to the latch. In this mode 1 is written to the pin by

the external device then it read fine.

Fig: Structure of port 1 pin

3) PORT 2

PORT 2 is used for higher external address byte or a normal I/O port. Here, the I/O operation is similar to

PORT 1. Latch of PORT 2 remains stable when Port 2 pin are used for external memory access.

Fig: Structure of port 2 pin

4) PORT 3

Following are the alternate functions of PORT 3:

PORT 3 Pin Function Description

Microcontrollers and Applications

31

P3.0 RXD Serial Input

P3.1 TXD Serial Output

P3.2 INT0 External Interrupt 0

P3.3 INT1 External Interrupt 1

P3.4 T0 Timer 0

P3.5 T1 Timer 1

P3.6 WR External Memory Write

P3.7 RD External Memory Read

It works as an I/O port same like port 2. Alternate functions of port 3 makes its architecture different than

other ports.

Fig: Structure of port 3 pin

Microcontrollers and Applications

32

UNIT 2
INSTRUCTION SYNTAX.

General syntax for 8051 assembly language is as follows.

 LABEL: OPCODE OPERAND ;COMMENT

LABEL : (THIS IS NOT NECESSARY UNLESS THAT SPECIFIC LINE HAS TO BE ADDRESSED). The label is a symbolic

address for the instruction. When the program is assembled, the label will be given specific address in which

that instruction is stored. Unless that specific line of instruction is needed by a branching instruction in the

program, it is not necessary to label that line.

OPCODE: Opcode is the symbolic representation of the operation. The assembler converts the opcode to

a unique binary code (machine language).

OPERAND: While opcode specifies what operation to perform, operand specifies where to perform that

action. The operand field generally contains the source and destination of the data. In some cases only

source or destination will be available instead of both. The operand will be either address of the data, or

data itself.

COMMENT: Always comment will begin with ; or // symbol. To improve the program quality,

programmer may always use comments in the program.

 ADDRESSING MODES

Various methods of accessing the data are called addressing modes.

8051 addressing modes are classified as follows.

1. Immediate addressing.

2. Register addressing.

3. Direct addressing.

4. Indirect addressing.

5. Relative addressing.

6. Absolute addressing.

7. Long addressing.

8. Indexed addressing.

9. Bit inherent addressing.

10. Bit direct addressing.

1. Immediate addressing.

In this addressing mode the data is provided as a part of instruction itself. In other words data

immediately follows the instruction.

Eg. MOV A,#30H

ADD A, #83 # Symbol indicates the data is immediate.

Microcontrollers and Applications

33

2. Register addressing.

In this addressing mode the register will hold the data. One of the eight general registers (R0 to R7)

can be used and specified as the operand.

Eg. MOV A,R0

 ADD A,R6

R0 – R7 will be selected from the current selection of register bank. The default register bank will be bank 0.

3. Direct addressing

There are two ways to access the internal memory. Using direct address and indirect address. Using direct

addressing mode we can not only address the internal memory but SFRs also. In direct addressing, an 8 bit internal

data memory address is specified as part of the instruction and hence, it can specify the address only in the range of

00H to FFH. In this addressing mode, data is obtained directly from the memory.

Eg. MOV A,60h

ADD A,30h

4. Indirect addressing

The indirect addressing mode uses a register to hold the actual address that will be used in data movement.

Registers R0 and R1 and DPTR are the only registers that can be used as data pointers. Indirect addressing cannot be

used to refer to SFR registers. Both R0 and R1 can hold 8 bit address and DPTR can hold 16 bit address.

Eg. MOV A,@R0

 ADD A,@R1

MOVX A,@DPTR

5. Indexed addressing.

In indexed addressing, either the program counter (PC), or the data pointer (DTPR)—is used to

hold the base address, and the A is used to hold the offset address. Adding the value of the base address to

the value of the offset address forms the effective address. Indexed addressing is used with JMP or MOVC

instructions. Look up tables are easily implemented with the help of index addressing.

Eg. MOVC A, @A+DPTR // copies the contents of memory location pointed by the sum of the accumulator

A and the DPTR into accumulator A.

MOVC A, @A+PC // copies the contents of memory location pointed by the sum of the

accumulator A and the program counter into accumulator A.

6. Relative Addressing.

Relative addressing is used only with conditional jump instructions. The relative address, (offset),

is an 8 bit signed number, which is automatically added to the PC to make the address of the next

instruction. The 8 bit signed offset value gives an address range of +127 to —128 locations. The jump

destination is usually specified using a label and the assembler calculates the jump offset accordingly.

The advantage of relative addressing is that the program code is easy to relocate and the address is

relative to position in the memory.

Eg: SJMP LOOP1

 JC BACK

7. Absolute addressing

Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL (Absolute Call)

instructions. These are 2 bytes instructions. The absolute addressing mode specifies the lowest 11 bit of

the memory. The upper 5 bit of the destination address are the upper 5 bit of the current program

counter. Hence, absolute addressing allows branching only within the current 2 Kbyte page of the

program memory.

Eg. AJMP LOOP1

Microcontrollers and Applications

34

ACALL LOOP2

8. Long Addressing

The long addressing mode is used with the instructions LJMP and LCALL. These are 3 byte

instructions. The address specifies a full 16 bit destination address so that a jump or a call can be made

to a location within a 64 Kbyte code memory space.

Eg. LJMP FINISH

LCALL DELAY

9. Bit Inherent Addressing

In this addressing, the address of the flag which contains the operand, is implied in the opcode of

the instruction.

Eg. CLR C ; Clears the carry flag to 0

10. Bit Direct Addressing

In this addressing mode the direct address of the bit is specified in the instruction. The RAM space

20H to 2FH and most of the special function registers are bit addressable. Bit address values are between

00H to 7FH.

Eg. CLR 07h ; Clears the bit 7 of 20h RAM space

SETB 07H ; Sets the bit 7 of 20H RAM space.

INSTRUCTION SET

1. Instruction Timings

The 8051 internal operations and external read/write operations are controlled by the oscillator clock.

T-state, Machine cycle and Instruction cycle are terms used in instruction timings.

T-state is defined as one subdivision of the operation performed in one clock period. The terms 'T- state' and

'clock period' are often used synonymously.

Machine cycle is defined as 12 oscillator periods. A machine cycle consists of six states and each state

lasts for two oscillator periods. An instruction takes one to four machine cycles to execute an

instruction.

Instruction cycle is defined as the time required for completing the execution of an instruction. The 8051

instruction cycle consists of one to four machine cycles.

Eg. If 8051 microcontroller is operated with 12 MHz oscillator, find the execution time for the following

four instructions.

1. ADD A, 45H

2. SUBB A, #55H

3. MOV DPTR, #2000H

4. MUL AB

Since the oscillator frequency is 12 MHz, the clock period is, Clock period = 1/12 MHz = 0.08333 µS. Time for 1

machine cycle = 0.08333 µS x 12 =1 µS.

Instruction No. of machine cycles Execution time

1. ADD A, 45H 1 1 µs

2. SUBB A, #55H 2 2 µs

3. MOV DPTR, #2000H 2 2 µs

4. MUL AB 4 4 µs

Microcontrollers and Applications

35

2. 8051 Instructions

The instructions of 8051 can be broadly classified under the following headings.

1. Data transfer instructions

2. Arithmetic instructions

3. Logical instructions

4. Branch instructions

5. Subroutine instructions

6. Bit manipulation instructions

 Data transfer instructions.

In this group, the instructions perform data transfer operations of the following types.

a. Move the contents of a register Rn to A

i. MOV A,R2

ii. MOV A,R7

b. Move the contents of a register A to Rn

i. MOV R4,A

ii. MOV R1,A

c. Move an immediate 8 bit data to register A or to Rn or to a memory location(direct or

indirect)

i. MOV A, #45H

ii. MOV R6, #51H

iii. MOV 30H, #44H

iv. MOV @R0, #0E8H

v. MOV DPTR, #0F5A2H

vi. MOV DPTR, #5467H

d. Move the contents of a memory location to A or A to a memory location using direct and

indirect addressing

i. MOV A, 65H

ii. MOV A,

@R0

iii. MOV 45H, A

iv. MOV @R1, A

e. Move the contents of a memory location to Rn or Rn to a memory location using direct

addressing

i. MOV R3, 65H

ii. MOV 45H, R2

f. Move the contents of memory location to another memory location using direct and

indirect addressing

i. MOV 47H, 65H

ii. MOV 45H, @R0

g. Move the contents of an external memory to A or A to an external memory

Microcontrollers and Applications

36

i. MOVX A,@R1

ii. MOVX @R0,A

h. Move the contents of program memory to A

i. MOVC A, @A+PC

ii. MOVC A, @A+DPTR

MOVX A,@DPTR

iii. MOVX@DPTR,A

 Arithmetic instructions.

The 8051 can perform addition, subtraction. Multiplication and division operations on 8 bit numbers.

Addition

In this group, we have instructions to

i. Add the contents of A with immediate data with or without carry.

i. ADD A, #45H

ii. ADDC A, #OB4H

ii. Add the contents of A with register Rn with or without carry.

i. ADD A, R5

ii. ADDC A, R2

iii. Add the contents of A with contents of memory with or without carry using direct and indirect

addressing

i. ADD A, 51H

ii. ADDC A, 75H

iii. ADD A, @R1

iv. ADDC A, @R0

CY AC and OV flags will be affected by this operation. Subtraction

In this group, we have instructions to
i. Subtract the contents of A with immediate data with or without carry.

i. SUBB A, #45H

ii. SUBB A, #OB4H

ii. Subtract the contents of A with register Rn with or without carry.

Microcontrollers and Applications

37

i. SUBB A, R5

ii. SUBB A, R2

iii. Subtract the contents of A with contents of memory with or without carry using direct and indirect

addressing

i. SUBB A, 51H

ii. SUBB A, 75H

iii. SUBB A, @R1

iv. SUBB A, @R0

CY AC and OV flags will be affected by this operation. Multiplication

MUL AB. This instruction multiplies two 8 bit unsigned numbers which are stored in A and B register.

After multiplication the lower byte of the result will be stored in accumulator and higher byte of result will

be stored in B register.
Eg. MOV A,#45H ;[A]=45H

MOV B,#0F5H ;[B]=F5H

MUL AB ;[A] x [B] = 45 x F5 = 4209

;[A]=09H, [B]=42H

Division

Microcontrollers and Applications

38

DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by the 8 bit unsigned number

which is stored in B register. After division the result will be stored in accumulator and remainder will be stored

in B register.
Eg. MOV A,#45H ;[A]=0E8H

MOV B,#0F5H ;[B]=1BH

DIV AB ;[A] / [B] = E8 /1B = 08 H with remainder 10H

;[A] = 08H, [B]=10H

DA A (Decimal Adjust After Addition).

When two BCD numbers are added, the answer is a non-BCD number. To get the result in BCD, we use

DA A instruction after the addition. DA A works as follows.

• If lower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower nibble.

• If upper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

Eg 1: MOV A,#23H

MOV R1,#55H

ADD A,R1 // [A]=78

DA A // [A]=78 no changes in the accumulator after da a

Eg 2: MOV A,#53H

MOV R1,#58H

ADD A,R1 // [A]=ABh

DA A // [A]=11, C=1 . ANSWER IS 111. Accumulator data is changed after DA A

Increment: increments the operand by one.

INC A INC Rn INC DIRECT INC @RiINC DPTR

INC increments the value of source by 1. If the initial value of register is FFh, incrementing the value will

cause it to reset to 0. The Carry Flag is not set when the value "rolls over" from 255 to 0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented. If the initial

value of DPTR is FFFFh, incrementing the value will cause it to reset to 0.

Decrement: decrements the operand by one.

DEC A DEC Rn DEC DIRECT DEC @Ri

DEC decrements the value of source by 1. If the initial value of is 0, decrementing the value will cause it to

reset to FFh. The Carry Flag is not set when the value "rolls over" from 0 to FFh.

 Logical Instructions

Logical AND

ANL destination, source:ANL does a bitwise "AND" operation between source and destination, leaving the

resulting value in destination. The value in source is not affected. "AND" instruction logically AND the bits

of source and destination.
ANL A,#DATA ANL A, Rn

ANL A,DIRECT ANL

A,@Ri

ANL DIRECT,A ANL DIRECT, #DATA

Logical OR

ORL destination, source:ORL does a bitwise "OR" operation between source and destination,

Microcontrollers and Applications

39

leaving the resulting value in destination. The value in source is not affected. " OR " instruction

logically OR the bits of source and destination.
ORL A,#DATA ORL A, Rn

ORL A,DIRECT ORL

A,@Ri

ORL DIRECT,A ORL DIRECT, #DATA

Logical Ex-OR

XRL destination, source: XRL does a bitwise "EX-OR" operation between source and

destination, leaving the resulting value in destination. The value in source is not affected. " XRL "

instruction logically EX-OR the bits of source and destination.
XRL A,#DATA XRL A,Rn

XRL A,DIRECT XRL

A,@Ri

XRL DIRECT,A XRL DIRECT, #DATA

Logical NOT

CPL complements operand, leaving the result in operand. If operand is a single bit then the state of the bit

will be reversed. If operand is the Accumulator then all the bits in the Accumulator will be reversed.

CPL A, CPL C, CPL bit address

SWAP A – Swap the upper nibble and lower nibble of A.

Rotate Instructions

RR A

This instruction is rotate right the accumulator. Its operation is illustrated below. Each bit is shifted one
location to the right, with bit 0 going to bit 7.

RL A

Rotate left the accumulator. Each bit is shifted one location to the left, with bit 7 going to bit 0

RRC A

Rotate right through the carry. Each bit is shifted one location to the right, with bit 0 going into the carry bit in the

PSW, while the carry was at goes into bit 7

RLC A

Rotate left through the carry. Each bit is shifted one location to the left, with bit 7 going into the carry bit in the

PSW, while the carry goes into bit 0.

Microcontrollers and Applications

40

 Branch (JUMP) Instructions

Jump and Call Program Range

There are 3 types of jump instructions. They are:-

1. Relative Jump

2. Short Absolute Jump

3. Long Absolute Jump

Relative Jump

Jump that replaces the PC (program counter) content with a new address that is greater than (the address

following the jump instruction by 127 or less) or less than (the address following the jump by 128 or less)

is called a relative jump. Schematically, the relative jump can be shown as follows: -

The advantages of the relative jump are as follows:-

1. Only 1 byte of jump address needs to be specified in the 2's complement form, ie. For jumping

ahead, the range is 0 to 127 and for jumping back, the range is -1 to -128.

2. Specifying only one byte reduces the size of the instruction and speeds up program execution.

3. The program with relative jumps can be relocated without reassembling to generate absolute

jump addresses.

Disadvantages of the absolute jump: -

1. Short jump range (-128 to 127 from the instruction following the jump instruction)

Instructions that use Relative Jump

SJMP <relative address>; this is unconditional jump

The remaining relative jumps are conditional jumps

JC <relative address>

JNC <relative address>

JB bit, <relative address>

JNB bit, <relative address>

JBC bit, <relative address>

CJNE <destination byte>, <source byte>, <relative address>

DJNZ <byte>, <relative address>

JZ <relative address>

JNZ <relative address>

Short Absolute Jump

In this case only 11bits of the absolute jump address are needed. The absolute jump address is calculated

in the following manner.

Microcontrollers and Applications

41

In 8051, 64 kbyte of program memory space is divided into 32 pages of 2 kbyte each. The hexadecimal

addresses of the pages are given as follows:-

Page (Hex) Address (Hex)

00 0000 - 07FF

01 0800 - 0FFF

02 1000 - 17FF

03 1800 - 1FFF

.

.

1E F000 - F7FF

1F F800 - FFFF

It can be seen that the upper 5bits of the program counter (PC) hold the page number and the lower 11bits

of the PC hold the address within that page. Thus, an absolute address is formed by taking page numbers

of the instruction (from the program counter) following the jump and attaching the specified 11bits to it to

form the 16-bit address.

Advantage: The instruction length becomes 2 bytes.

Example of short absolute jump: -
ACALL <address 11>
AJMP <address 11>

Long Absolute Jump/Call

Applications that need to access the entire program memory from 0000H to FFFFH use long absolute jump.

Since the absolute address has to be specified in the op-code, the instruction length is 3 bytes (except for

JMP @ A+DPTR). This jump is not re-locatable.

Example: -

LCALL <address 16>

LJMP <address 16>

JMP @A+DPTR

Another classification of jump instructions is

1. Unconditional Jump

2. Conditional Jump

1. The unconditional jump is a jump in which control is transferred unconditionally to the target location.

a. LJMP (long jump). This is a 3-byte instruction. First byte is the op-code and second and third bytes

represent the 16-bit target address which is any memory location from 0000 to FFFFH

eg: LJMP 3000H

b. AJMP: this causes unconditional branch to the indicated address, by loading the 11 bit address to 0 -10

bits of the program counter. The destination must be therefore within the same 2K blocks.

c. SJMP (short jump). This is a 2-byte instruction. First byte is the op-code and second byte is the relative

target address, 00 to FFH (forward +127 and backward -128 bytes from the current PC value). To

calculate the target address of a short jump, the second byte is added to the PC value which is address of

the instruction immediately below the jump.

Microcontrollers and Applications

42

2. Conditional Jump instructions.

JBC Jump if bit ＝ 1 and clear bit
JNB Jump if bit ＝ 0

JB Jump if bit ＝ 1

JNC Jump if CY ＝ 0

JC Jump if CY ＝ 1

CJNE reg,#data Jump if byte ≠ #data

CJNE A,byte Jump if A ≠ byte

DJNZ Decrement and Jump if A ≠ 0
JNZ Jump if A ≠ 0

JZ Jump if A ＝ 0

All conditional jumps are short jumps.

Bit level jump instructions:

Bit level JUMP instructions will check the conditions of the bit and if condition is true, it jumps to the

address specified in the instruction. All the bit jumps are relative jumps.

JB bit, rel ; jump if the direct bit is set to the relative address specified. JNB

bit, rel ; jump if the direct bit is clear to the relative address specified.

JBC bit, rel ; jump if the direct bit is set to the relative address specified and then clear the bit.

 Subroutine CALL And RETURN Instructions

Subroutines are handled by CALL and RET instructions There

are two types of CALL instructions

1. LCALL address(16 bit)

This is long call instruction which unconditionally calls the subroutine located at the indicated 16 bit

address. This is a 3 byte instruction. The LCALL instruction works as follows.

a. During execution of LCALL, [PC] = [PC]+3; (if address where LCALL resides is say, 0x3254;

during execution of this instruction [PC] = 3254h + 3h = 3257h

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08

c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 57 will be stored in memory location 08.

d. [SP]=[SP]+1; (SP increments again and [SP]=09)

e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 32 will be stored in memory location 09.

With these the address (0x3254) which was in PC is stored in stack.

f. [PC]= address (16 bit); the new address of subroutine is loaded to PC. No flags are affected.

2. ACALL address(11 bit)

This is absolute call instruction which unconditionally calls the subroutine located at the indicated 11 bit

address. This is a 2 byte instruction. The SCALL instruction works as follows.

a. During execution of SCALL, [PC] = [PC]+2; (if address where LCALL resides is say, 0x8549;

during execution of this instruction [PC] = 8549h + 2h = 854Bh

b. [SP]=[SP]+1; (if SP contains default value 07, then SP increments and [SP]=08

c. [[SP]] = [PC7-0]; (lower byte of PC content ie., 4B will be stored in memory location 08.

d. [SP]=[SP]+1; (SP increments again and [SP]=09)

e. [[SP]] = [PC15-8]; (higher byte of PC content ie., 85 will be stored in memory location 09.

With these the address (0x854B) which was in PC is stored in stack.

Microcontrollers and Applications

43

f. [PC10-0]= address (11 bit); the new address of subroutine is loaded to PC. No flags are
affected.

RET instruction
RET instruction pops top two contents from the stack and load it to PC.

g. [PC15-8] = [[SP]];content of current top of the stack will be moved to higher byte of PC.

h. [SP]=[SP]-1; (SP decrements)

i. [PC7-0] = [[SP]] ;content of bottom of the stack will be moved to lower byte of PC.

j. [SP]=[SP]-1; (SP decrements again)

 Bit manipulation instructions.

8051 has 128 bit addressable memory. Bit addressable SFRs and bit addressable PORT pins. It is possible to perform

following bit wise operations for these bit addressable locations.

1. LOGICAL AND

a. ANL C,BIT(BIT ADDRESS) ; ‘LOGICALLY AND’ CARRY AND CONTENT OF BIT ADDRESS, STORE RESULT IN CARRY

b. ANL C, /BIT; ; ‘LOGICALLY AND’ CARRY AND COMPLEMENT OF CONTENT OF BIT ADDRESS, STORE RESULT IN CARRY

2. LOGICAL OR

a. ORL C,BIT(BIT ADDRESS) ; ‘LOGICALLY OR’ CARRY AND CONTENT OF BIT ADDRESS, STORE RESULT IN CARRY

b. ORL C, /BIT; ; ‘LOGICALLY OR’ CARRY AND COMPLEMENT OF CONTENT OF BIT ADDRESS, STORE RESULT IN CARRY

3. CLR bit

a. CLR bit ; CONTENT OF BIT ADDRESS SPECIFIED WILL BE CLEARED.

b. CLR C ; CONTENT OF CARRY WILL BE CLEARED.

4. CPL bit

a. CPL bit ; CONTENT OF BIT ADDRESS SPECIFIED WILL BE COMPLEMENTED.

b. CPL C ; CONTENT OF CARRY WILL BE COMPLEMENTEd

ASSEMBLER DIRECTIVES

Assembler directives tell the assembler to do something other than creating the machine code for an

instruction. In assembly language programming, the assembler directives instruct the assembler to

1. Process subsequent assembly language instructions

2. Define program constants

3. Reserve space for variables

The following are the widely used 8051 assembler directives.

ORG (origin)

The ORG directive is used to indicate the starting address. It can be used only when the

program counter needs to be changed. The number that comes after ORG can be either in hex

or in decimal.

Eg: ORG 0000H ;Set PC to 0000

Microcontrollers and Applications

44

.EQU and SET

EQU and SET directives assign numerical value or register name to the specified symbol name.

EQU is used to define a constant without storing information in the memory. The symbol defined

with EQU should not be redefined.

SET directive allows redefinition of symbols at a later stage.

DB (DEFINE BYTE)

The DB directive is used to define an 8 bit data. DB directive initializes memory with 8 bit values.

The numbers can be in decimal, binary, hex or in ASCII formats. For decimal, the 'D' after the

decimal number is optional, but for binary and hexadecimal, 'B' and ‘H’ are required. For ASCII,

the number is written in quotation marks (‘LIKE This).

DATA1: DB 40H ; hex

DATA2: DB 01011100B ; b i n a r y

DATA3: DB 48 ; decimal

DATA4: DB ' HELLO W’ ; ASCII

 END

The END directive signals the end of the assembly module. It indicates the end of the program to

the assembler. Any text in the assembly file that appears after the END directive is ignored. If the

END statement is missing, the assembler will generate an error message.

Microcontrollers and Applications

45

ASSEMBLY LANGUAGE PROGRAMS

1. Write a program to add the values of locations 50H and 51H and store the result in locations in 52h

and 53H.

ORG 0000H ; Set program counter 0000H

MOV A,50H ; Load the contents of Memory location 50H into A ADD ADD A,51H

; Add the contents of memory 51H with CONTENTS A

MOV 52H,A ; Save the LS byte of the result in 52H

MOV A, #00 ; Load 00H into A

ADDC A, #00 ; Add the immediate data and carry to A

MOV 53H,A ; Save the MS byte of the result in location 53h

END

2. Write a program to store data FFH into RAM memory locations 50H to 58H using direct

addressing mode

ORG 0000H ; Set program counter 0000H

MOV A, #0FFH ; Load FFH into A

MOV 50H, A ; Store contents of A in location 50H

MOV 51H, A ; Store contents of A in location 5IH

MOV 52H, A ; Store contents of A in location 52H

MOV 53H, A ; Store contents of A in location 53H

MOV 54H, A ; Store contents of A in location 54H

MOV 55H, A ; Store contents of A in location 55H

MOV 56H, A ; Store contents of A in location 56H

MOV 57H, A ; Store contents of A in location 57H

MOV 58H, A ; Store contents of A in location 58H

END

3. Write a program to subtract a 16 bit number stored at locations 51H-52H from 55H-56H and store

the result in locations 40H and 41H. Assume that the least significant byte of data or the result is

stored in low address. If the result is positive, then store 00H, else store 01H in 42H. ORG 0000H

; Set program counter 0000H

MOV A, 55H ; Load the contents of memory location 55 into A

CLR C ; Clear the borrow flag

SUBB A,51H ; Sub the contents of memory 51H from contents of A

MOV 40H, A ; Save the LSByte of the result in location 40H

MOV A, 56H ; Load the contents of memory location 56H into A

SUBB A, 52H ; Subtract the content of memory 52H from the content A

MOV 41H, ; Save the MSbyte of the result in location 415.

MOV A, #00 ; Load 005 into A

ADDC A, #00 ; Add the immediate data and the carry flag to A MOV

42H, A ; If result is positive, store00H, else store 0lH in 42H

END

Microcontrollers and Applications

46

4. Write a program to add two 16 bit numbers stored at locations 51H-52H and 55H-56H and store

the result in locations 40H, 41H and 42H. Assume that the least significant byte of data and the

result is stored in low address and the most significant byte of data or the result is stored in high

address.

ORG 0000H ; Set program counter 0000H

MOV A,51H ; Load the contents of memory location 51H into A

ADD A,55H ; Add the contents of 55H with contents of A

MOV 40H,A ; Save the LS byte of the result in location 40H

MOV A,52H ; Load the contents of 52H into A

ADDC A,56H ; Add the contents of 56H and CY flag with A

MOV 41H,A ; Save the second byte of the result in 41H

MOV A,#00 ; Load 00H into A

ADDC A,#00 ; Add the immediate data 00H and CY to A

MOV 42H,A ; Save the MS byte of the result in location 42H

END

5. Write a program to store data FFH into RAM memory locations 50H to 58H using indirect

addressing mode.

ORG 0000H ; Set program counter 0000H

MOV A, #0FFH ; Load FFH into A

MOV RO, #50H ; Load pointer, R0-50H

MOV R5, #08H ; Load counter, R5-08H

Start:MOV @RO, A ; Copy contents of A to RAM pointed by R0

INC RO ; Increment pointer

DJNZ R5, start ; Repeat until R5 is zero

END

6. Write a program to add two Binary Coded Decimal (BCD) numbers stored at locations 60H and

61H and store the result in BCD at memory locations 52H and 53H. Assume that the least

significant byte of the result is stored in low address.

ORG 0000H ; Set program counter 00004

MOV A,60H ; Load the contents of memory location 6.0.H into A

ADD A,61H ; Add the contents of memory location 61H with contents of A

DA A ; Decimal adjustment of the sum in A

MOV 52H, A ; Save the least significant byte of the result in location 52H

MOV A,#00 ; Load 00H into .A

ADDC A,#00H ; Add the immediate data and the contents of carry flag to A

MOV 53H,A ; Save the most significant byte of the result in location 53:,

END

7. Write a program to clear 10 RAM locations starting at RAM address 1000H.

ORG 0000H ;Set program counter 0000H

MOV DPTR, #1000H ;Copy address 1000H to DPTR

CLR A ;Clear A

MOV R6, #0AH ;Load 0AH to R6

again: MOVX @DPTR,A ;Clear RAM location pointed by DPTR

Microcontrollers and Applications

47

INC DPTR ;Increment DPTR

DJNZ R6, again ;Loop until counter R6=0

END

8. Write a program to compute 1 + 2 + 3 + N (say N=15) and save the sum at70H

ORG 0000 H ; Set program counter 0000H

N EQU 15

MOV R 0 ,#00 ; Clear R0

CLR A ; Clear A

again: INC R 0 ; Increment R0

ADD A, R0 ; Add the contents of R0 with A

CJNE R 0,# N, again ; Loop until counter, R0, N

MOV 70 H,A ; Save the result in location 70H END

9. Write a program to multiply two 8 bit numbers stored at locations 70H and 71H and store the result

at memory locations 52H and 53H. Assume that the least significant byte of the result is stored in low

address.

ORG 0000H ; Set program counter 00 OH

MOV A, 70H ; Load the contents of memory location 70h into A

MOV B, 71H ; Load the contents of memory location 71H into B

MUL AB ; Perform multiplication

MOV 52H,A ; Save the least significant byte of the result in location 52H MOV 53H,B ; Save the most

significant byte of the result in location 53

END

10. Ten 8 bit numbers are stored in internal data memory from location 5oH. Write a

program to increment the data.

Assume that ten 8 bit numbers are stored in internal data memory from location 50H, hence R0 or R1

must be used as a pointer.

The program is as follows.

OPT 0000H

MOV R0,#50H

MOV R3,#0AH

Loopl: INC @R0

INC RO

DJNZ R3, loopl END

END

11. Write a program to find the average of five 8 bit numbers. Store the result in H.

(Assume that after adding five 8 bit numbers, the result is 8 bit only).

ORG 0000H

MOV 40H,#05H

MOV 41H,#55H

MOV 42H,#06H

MOV 43H,#1AH

MOV 44H,#09H

MOV R0,#40H

MOV R5,#05H

MOV B,R5

CLR A

Loop: ADD A,@RO

INC RO

Microcontrollers and Applications

48

DJNZ R5,Loop

DIV AB

MOV 55H,A

END

12. Write a program to find the cube of an 8 bit number program is as follows

ORG 0000H

MOV

R1,#N

MOV A,R1

MOV B,R1

MUL AB //SQUARE IS

COMPUTED MOV R2, B

MOV B, R1

MUL AB

MOV 50,A

MOV 51,B

MOV A,R2

MOV B, R1

MUL AB

ADD A, 51H

MOV 51H,

A MOV 52H,

B MOV A, #

00H ADDC

A, 52H

MOV 52H, A //CUBE IS STORED IN

52H,51H,50H END

13. Write a program to exchange the lower nibble of data present in external memory 6000H and 6001H

ORG 0000H ; S e t p r o g r a m c o u n t e r 0 0h

MOV DPTR, # 6000 H ; Copy address 6000 H to DPTR

MOVX A, @DPTR ; C o p y c o n t e n t s o f 6 0 0 0 8 t o A

MOV R0, #45H ; L o a d p o i n t e r , R 0 = 4 5 H

MOV @RO, A ; C o p y c o n t o f A t o R A M p o i n t e d b y 8 0

INC DPL ; I n c r e m e n t p o i n t e r

MOVX A, @DPTR ; C o p y c o n t e n t s o f 6 0 0 1 8 t o A

XCHD A, @R0 ; E x c h a n g e l o w e r n i b b l e o f A w i t h R A M p o i n t e d b y R O

MOVX @DPTR, A ; C o p y c o n t e n t s o f A t o 6 0 0 1 8

DEC DPL ; D e c r e m e n t p o i n t e r

MOV A, @R0 ; C o p y c o n t of R A M p o i n t e d b y R 0 t o A
MOVX @DPTR, A ; C o p y c o n t o f A t o R A M p o i n t e d b y D P T R

END

14. Write a program to count the number of and o's of 8 bit data stored in location 6000H.

ORG 00008 ; Set program counter 00008

MOV DPTR, #6000h ; Copy address 6000H to DPTR

MOVX A, @DPTR ; Copy num be r t o A

MOV R0,#08 ; Copy 08 in RO

MOV R2,#00 ; C o py 00 in R 2

MOV R3,#00 ; C o py 00 in R 3

CLR C ; Clear carry flag

BACK: RLC A ; R o t a t e A t h r o u g h c a r r y f l a g

Microcontrollers and Applications

49

JC NEXT ; I f C F = 1 , b r a n c h t o n e x t

INC R2 ; I f C F = 0 , i n c r e m e n t R 2 AJMP

NEXT2 NEXT: INC R3 ; I f C F = 1 , i n c r e m e n t R 3

NEXT2: DJNZ RO,BACK ; R e p e a t u n t i l R O i s z e r o

END

15. Write a program to shift a 24 bit number stored at 57H-55H to the left logically four places.

Assume that the least significant byte of data is stored in lower address.

ORG 0000H ; Set program counter 0000h

MOV R1,#04 ; Set up loop count to 4

again: MOV A,55H ; Place the least significant byte of data in A

CLR C ; Clear tne carry flag

RLC A ; Rotate contents of A (55h) left through carry

MOV 55H,A

MOV A,56H

RLC A ; Rotate contents of A (56H) left through carry

MOV 56H,A

MOV A,57H

RLC A ; Rotate contents of A (57H) left through carry

MOV 57H,A

DJNZ R1,again ; Repeat until R1 is zero

END

16. Two 8 bit numbers are stored in location 1000h and 1001h of external data memory. Write

a program to find the GCD of the numbers and store the result in 2000h. ALGORITHM
• Step 1 :Initialize external data memory with data and DPTR with address

• Step 2 :Load A and TEMP with the operands

• Step 3 :Are the two operands equal? If yes, go to step 9

• Step 4 :Is (A) greater than (TEMP) ? If yes, go to step 6

• Step 5 :Exchange (A) with (TEMP) such that A contains the bigger number

• Step 6 :Perform division operation (contents of A with contents of TEMP)

• Step 7 :If the remainder is zero, go to step 9

• Step 8 :Move the remainder into A and go to step 4

• Step 9 :Save the contents 'of TEMP in memory and terminate the program

ORG 0000H ; Set program counter 0000H

TEMP EQU 70H

TEMPI EQU 71H

MOV DPTR, #1000H ; Copy address 100011 to DPTR

MOVX A, @DPTR ; Copy First number to A

MOV TEMP, A ; Copy First number to temp INC DPTR

MOVX A, @DPTR ; Copy Second number to A

LOOPS: CJNE A, TEMP, LOOP1 ; (A) /= (TEMP) branch to LOOP1

LOOP1:

AJMP LOOP2

JNC LOOP3

; (A) = (TEMP) branch to L00P2
; (A) > (TEMP) branch to LOOP3

 NOV TEMPI, A ; (A) < (TEMP) exchange (A) with (TEMP)
 MOV A, TEMP

 MOV TEMP, TEMPI

LOOP3: MOV B, TEMP

 DIV AB ; Divide (A) by (TEMP)
 MOV A, B ; Move remainder to A
 CJNE A,#00, LOOPS ; (A)/=00 branch to LOOPS

LOOP2: MOV A, TEMP

 MOV DPTR, #2000H

 MOVX @DPTR, A ; Store the result in 2000H
 END

Microcontrollers and Applications

50

UNIT- 3

REAL TIME CONTROL –INTERRUPTS

3.1 INTERRUPT HANDLING STRUCTURE

• IDENTIFICATION OF INTERRUPT SOURCE ON INTERRUPT

• ENABLE/MASK

o Primary Level

o Secondary Level

• FINDING VECTOR ADDRESS FOR CPU TO VECTOR TO ISR

o Vector to ISR –ADDR

o Vector to pointer bytes of ISR

• PRIORITY ASSIGNMENT

o Default priority on reset

o User assignment to override default

▪ 1 or 0

▪ Between O & P

 3.2 ROUTINE

• A SUBPROGRAM OR PROCEDURE OR SUB ROUTINE IMPLEMENTED BY

CALL AND RETURN

 3.3 INTERRUPT SOURCE

• EXTERNAL/INTERNAL EVENT FROM DEVICE OR CIRCUIT CAUSING AN

INTERRUPT

• UNPLANNED W.R.T INSTRUCTION EXECUTION

 3.4 INTERRUPT SERVICE ROUTINE

• EXECUTED IN RESPONSE TO AN INTERRUPT

• ONE ISR FOR EACH SOURCE OF INTERRUPT

• ISR, SAVES PARAMETERS (PSW, REGS, SFR’s etc) BEFORE

EXECUTING ACTUAL PROGRAM

• AT THE END OF THE ISR RETURN FROM INTERRUPT INSTRUCTIONS IS

EXECUTED (RETI FOR 8051)

• BEFORE RETI PARAMETERS SAVED EARLIER SHOULD BE RETRIEVED

• RETI DOES FOLLOWING:

o RESTORES PC

o RESTORE INTERRUPT STRUCTURE

Microcontrollers and Applications

51

o CHECK PENDING INTERRUPTS. IF YES INITIATE ANOTHER ISR.

IF NO, GO BACK TO MAIN PROGRAM

 3.5.1 SERVICING 8051 INTERRUPTS

• COMPLETE CURRENT INSTRUCTION. CHECK IF EA IS 1 (PRIMARY

LEVEL ENABLE)

• CHECK SOURCE FOR UNMASKED INTERRUPTS AND DO THE

FOLLOWING

o SAVE PC

o RESET EA MOMENTARILY (UNTIL EXECUTION OF FIRST

INSTRUCTIONS) AND SETS AGAIN, AT ISR AUTOMATICALLY

o PC IS SET AS PER VECTOR ADDRESS OF INTERRUPT

o GO TO ISR

o DURING ISR, HIGHER PRIORITY INTERRUPT CAN INTERRUPT

ISR, IF EA IS NOT MADE 0 BY PROGRAMMER

o LOWER PRIORITY INTERRUPTS CHECKED AFTER RETI

 3.5.2 IDENTIFICATION OF INTERRUPT SOURCE

• INTERRUPT SOURCE IS IDENTIFIED BY CPU BY LOOKING AT

RESPECTIVE FLAGS IN INTERRUPT STATUS REGISTER OR INTERRUPT

PENDING

 REGISTER

• IN 8051 TCON AND SCON HAVE FLAGS

• IN SCON TI or RI WILL INDICATE INTERRUPT FLAG

• FLAGS SHOULD BE RESET AS A PART OF ISR, WHEREVER REQUIRED

• IN 8051 TI/RI SHOULD BE RESET IN ISR

• SOME FLAGS GET RESET AUTOMATICALLY ON TRANSFER OF

CONTROL TO ISR LIKE TIMER FLAGS AND EXTERNAL/INTERNAL

FLAGS OF 8051

 3.5.3 ADDRESS OF ISR

THREE METHODS

• DIRECT ADDRESS ACCESS

o Interrupt source provides address. It is done during interrupt

acknowledge cycle. Example 8085

• VECTOR ADDRESS AS ISR ADDRESS

o Interrupt source auto generates vector address.

▪ Example –

• 8051 interrupts

• 8085 (Trap, RST 5.5, 6.5 & 7.5)

o ISR can be at vector address itself or you can have a jump

instructions

 to a memory where ISR is available

Microcontrollers and Applications

52

o ISR address separated by 8 bytes

• VECTOR ADDRESS AS POINTER TO ISR ADDRESS

o Interrupt source provides to CPU a vector address pointer. From

this pointed memory, ISR address is picked up

o Interrupting device (external) can put vector address pointer on

data bus during INTACK cycle

▪ Example:

• 68HCII/12

80X86 (Here interrupt type number is put and address
pointer is calculated by multiplying it by 4)

• 8259 putting vector address pointer on data bus (In

case of 8086 type number is sent as mentioned

above)

o ISR address pointers separated by four bytes

o Example of programming for serial port:

▪ Main Program

• SETB ES

• MOV SCON,#0C0H

• MOV R0,#60H

▪ ISR

• ORG 23H

• DJNZ R0,SEND

• RETI

• SEND: MOV SBUF,@R0

• CLR Ti

• RETI

 3.6 INTERRUPT LATENCY AND INTERRUPT DEAD LINE

• INTERRUPT LATENCY (Td) IS THE INTERVAL BETWEEN INTERRUPT

EVENT AND START OF ISR FOR THAT EVENT

• INTERRUPT DEAD LINE (Tlat)IS THE TIME BY WHICH INTERRUPT

SHOULD BE SERVICED ELSE INFORMATION IS LOST \

o Example:

▪ Latency of serial port interrupt should be less than 11/9600

second of interrupts are occurring every 11/9600 second

Td < Tlat

 3.7 MULTIPLE SOURCES OF INTERRUPTS

• INTERNAL (TO overflow in 8051)

• EXTERNAL (INTO in 8051)

• HARDWARE

• SOFTWARE

Microcontrollers and Applications

53

• Hardware interrupts related to internal devices

o INTERNAL TIMER OVERFLOWS (ALL MCs)

o INPUT CAPTURE INTERRUPT (68HC11/12)

o OUTPUT COMPARE INTERRUPT (68HC11/12)

o INTERRUPT AT END OF SERIAL TRANSMISSION

(8051,68HC11,80196)

o INTERRUPT AT END OF SERIAL RECEPTION

(8051,68HC11,80196)

o INTERRUPT WHEN SERIAL RECEIVE BUFFER (FIFO) IS HALF

FULL OR FULL (80196)

o INTERRUPT ON START OF ANALOG TO DIGITAL CONVERSION

OR AT END OF CONVERSION

• Hardware interrupts related to external sources or peripheral

o INTERRUPTS OCCURRING AT PINS OF MICRO CONTROLLER OR

MICRO PROCESSOR
▪ INTR or NMI in 8086

▪ INT0 or INT1 in 8051

▪ RST 5.5, RST 6.5, RST 7.5 in 8085

o IN SUCH INTERRUPTS ADDRESSES OF ISRs WILL BE ANY ONE

OF

THE 3 METHODS DESCRIBED IN 3.5.3

• Software related interrupts

o SW Instructions

▪ SWI INSTRUCTION IN 68HC11

▪ RST1, RST2 etc in 8085

▪ INT N in 8086

▪ INT 3 in 8086 (Breakpoint interrupt)

▪ INT O (Overflow interrupt which is Type 4)

o ERRORS

▪ Division by 0

▪ Illegal opcode

▪ Overflow

 3.8 NON MASKABLE INTERRUPT SOURCE (NMI)

• INTERRUPTS CAN BE MASKED, BUT THEY ARE CERTAIN INTERRUPTS

 WHICH CANNOT BE MASKED. THEY HAVE TO BE SERVICED
IMMEDIATELY

• NORMALLY NMIs WILL BE EMERGENCY CONDITIONS

• 8051 DOES NOT HAVE ANY NMIs

• 8086 HAS ONE NMI. IT COULD BE CONNECTED TO POWER FAILURE

CONDITION OR DRAM PARITY ERROR DETECTION

Microcontrollers and Applications

54

• 68HC11 HAS CLOCK MONITOR FAILURE AN ILLEGAL

(UNIMPLEMENTED) INSTRUCTIONS AS NMIs

 3.9 ENABLING (Unmasking) /DISABLING (Masking) OF INTERRUPT SOURCE

• INTERRUPTS CAN BE DISABLED OR ENABLED

• TWO LEVELS OF INTERRUPT ENABLING

• PRIMARY LEVEL/GLOBAL LEVEL. THIS SHOULD BE SAID TO ENABLE

ANY INTERRUPT. IF RESET ALL INTERRUPTS WILL BE DISABLED – For

Ex: DURING CRITICAL REGION OF PROGRAM ONE COULD LIKE TO

DISABLE

ALL INTERRUPTS

• ENABLE INTERRUPTS STRUCTURE (GLOBAL LEVEL) BUT DISABLE

INDIVIDUAL INTERRUPT SOURCES OR GROUP OF SOURCES

• EXAMPLES OF 8051

o IE.7 BIT is global enable

o IE.6 – IE.0 are used for selective enabling of interrupt sources

o INSTRUCTIONS

▪ SETB IE.7: Enable Global Level. Enable all interrupt

sources

▪ CLR ES : Disable or Mask serial port interrupt

▪ MOV IE,#83H : Enable global level, Timer 0 and external

 interrupt 0

• EXAMPLES OF ISR FOR SERIAL PORT TRANSMIT INTERRUPT

o ORG 0023H: Vector address for serial port interrupt

o LJMP 400H: ISR is at 400H

o ORG 400H:

o ISR: CLR EA: Disable global level interrupt

o MOV SBUF,#41H Put character in SBUF

o CLR TI Resets TI Flag

o CLR ES Disable serial port interrupt

o SETB EA Enable global level interrupt

o RETI Return from Interrupt

3.10 POLLING TO DETERMINE THE INTERRUPT SOURCES AND ASSIGNMENTS OF
THE PRIORITIES AMONG THEM

• SEVERAL INTERRUPTS MAY OCCUR IN QUICK SUCCESSIONS

o Several interrupts occurring at the same time

(during execution time of a set of instructions)
o Interrupts occurring during an ISR

• INTERRUPT STRUCTURE SHOULD HAVE THE FOLLOWING FEATURES

TO TAKE CARE OF ABOVE SITUATION

o Multiple sources should have default priorities (8051,80960 etc)

Microcontrollers and Applications

55

o Each of the multiple interrupt sources should have user assigned

priorities (8051 – 0 OR 1) (80196 – 0-31)

o User assigned priorities over ride default priorities

o User can change priorities depending on need

o EXAMPLE

▪ Let serial data is being received by 8051 serial port at 9600

baud. In this case interrupts will occur every 10 or 11/9600

second. Hence interrupt should be every 11/9600 else data

will be lost. Compare this with A/D conversion interrupt.

This can be

 serviced every 1 sec. Hence between the two, serial port will be

assigned higher priority
o POLLING PROCEDURES

▪ Two Polling Procedures

• In 8051 family polling for higher priority takes place

 during ISR

• IN 68HC11 family polling is at end of ISR

▪ 8051

• Polling during ISR, at end of each instruction (except

during initial instruction and critical region)

• User assigned priority

• Default assigned priority if multiple interrupts have

same user priority

• Vectored priority method, with diversion to higher

ISR, during an ISR

▪ 68HC11

• No polling during ISR

• Polling at end of ISR

• Polling of user assigned priorities is done first

• Polling of default priority next

• Vectored priority method with no diversion during ISR

3.11 ADVANTAGE OF POLLING FOR A PENDING HIGHER PRIORITY INTERRUPT
DURING AN ISR

• EXAMPLE

o Let us take four interrupt sources INT1, INT2, INT3, INT4. Services

are ISR1, ISR2, ISR3, ISR4. ISR1 has highest priority.

▪ ISR3 under service. Execution Time of 2ms left at t

▪ At t4 ISR4 is pending since 1ms

▪ INT1 occurs at t – Its execution time is 5 ms

Therefore latency for INT4 = 1+2+5 = 8 ms
Latency for INT1 = 0
(Neglecting context switching)
▪ INT3 restarts after 5ms takes 7ms to complete

Microcontrollers and Applications

56

• CONCLUSION

▪ ISR1 done immediately

▪ ISR4 is affected badly. It can be serviced earlier by user

assigned higher priority

▪ DIAGRAM TO FOLLOW

ISR3 executing

2 ms

ISR1 executing
1 ms

 5 ms
Int1 occurs
 Remaining ISR3

 2 ms

 ISR4
8 ms (latency for INT4)
INT4 occurs

3.12 ADVANTAGE OF POLLING A PENDING HIGHER PRIORITY INTERNAL SOURCE AT
END OF AN ISR

• EXAMPLE

o Same as in 3.11 – but latency times will be different as shown

ISR3 executing

2 ms

1ms ISR1 executing

 5 ms

ISR4 executing
 8 ms (latency for int4)
 INT4 occurs

▪ Here ISR1is executed only after ISR3 is completed. Hence

latency time is 2ms. This is due to pre-emption allowed at

end of ISR

▪ Latency of INT4 is still 8ms. To reduce it ISR has to be

disabled. Then latency for INT4 becomes 3 ms.

▪ Latency is predictable as an ISR is not disturbed. Hence

 t

 INT1 occurs

Microcontrollers and Applications

57

completion of ISRs are not known
▪ Disabling interrupt during ISR in earlier example makes it

same

as this example

3.13 INTERRUPT STRUCTURE IN 8051

• Seven interrupt source groups

• EA BIT Can disable interrupts from all source groups

• If EA has enabled the interrupt structure then that source group is

recognized and serviced whose enable bit is set in IE register

• Every source group has a unique vector address

• Each source group may have one or two interrupt sources. For example:

GROUP 1 has only one i.e. INTO (external interrupt) where as GROUP 7

has

two sources i.e. TI (Transmitter interrupt and receiver interrupt)

• Once CPU recognizes interrupt, EA is temporarily disabled till the first

instructions of ISR, so that PC is properly saved on the stack before any

other interrupt is given to CPU

• There are totally seven source groups as there are seven vector addresses

• At the end of each instruction polling is done for pending, identified and

enabled interrupt sources of priority greater than the one presently

serviced by ISR

• Each source group can be assigned a low priority or high priority (only

two priority levels)

• Polling is for user assigned priority first and then default priority

• Priorities are as below:

o Group 1 INT0 Highest (0003h)

o Group 2 T2 (8052 only) (002bh)

o Group 3 SI, synchronous port interface (select members of

8051 family)

o Group 4 TF0 (000BH) (0053H)

o Group 5 INT1 (0013H)

o Group 6 TF1 (001BH)

o Group 7 SI Serial port (0023H)

Microcontrollers and Applications

58

Microcontrollers and Applications

59

UNIT 4

REAL TIME CONTROL TIMERS

 4.1 PROGRAMMABLE FEATURES OF TIMERS

o Start/Stop

▪ Ex 1: In 8051 set TRO=1 for starting timer 0

▪ Ex 2: In 68HC11/12 it is not programmable as timer is free

running

o Programming Pre-Scaler

▪ Ex 1: In 8051 it is not programmable, It is fixed as 12

▪ Ex 2: In 8096 it is not programmable, it is fixed at 8

▪ In 68HC11/68HC12 it is programmable by two bits PR0 &

PR1.

 So four factors – they are 1,4,8 & 16.
o Programming inputs of timer at start (Pre loading timers)

▪ Ex 1: 8051 has the facility. TL0 & TH0 to be loaded with

initial

 non zero value. Let value be X after (2n-1-x) pulses , outputs will
be 1s. After (2n-x) pulses all outputs will become 0 (TL0 and
TH0 will also become 0). It is called overflow.

▪ Ex 2 : In 68HC11 this feature is not available as it is free

running

o Auto Loading inputs

▪ After one cycle of counts i.e. when over flow occurs, inputs

will be loaded again automatically and cycle repeats

 4.2 Overflow events in 8051

o Overflow sets a flag (TF0 in 8051 for timer 0)

o TF0 interrupts CPU

o TF0 reset automatically on branching to ISR

o Hence TF0 can be used for next interrupt.

o ISR can start or stop an event. For example –Robot arm movement

o Without interrupt TF0 can be polled and on being set a port bit can

be set/reset/toggled

o ISR can be used to maintain a real time clock in memory locations

 4.3 Free Running counter and real time control

Microcontrollers and Applications

60

o Programmable timers not ideal for real time control as time is lost

between start/stop. (latency of ISR introduces delay in case of

interrupt driven timer

o Free running counter is ideal for real time control as no time is lost

o It does not have start/stop and preloading the input facility

o Once it starts on power up, it keeps running

o It is like needle of a clock

o A watch is like three free running counter one for second, one for

minute and one for hour

 4.4 Output compare with free running counter

o Output of counter is compared with a register which is preset to a

pre defined value

o On successful comparison an event can start like raising an alarm

o On successful comparison an interrupt can be generated

 Sequence of steps to move a robotic arm every 16 seconds using output compare

Register and 16 bit free running counter receiving pulses every 2ms.

• Assumptions

o ISR1 for timer over flow interrupt. It updates a memory location

(M1) to keep track of number of overflows

o ISR2 is for output compare interrupt

o Overflow and OC interrupt masked to begin with

o M1 is FFH and indicates initial start condition

• Count inputs to timer should be 16s/24s = 8000000

• To start with we start robot arm and after 8000000pulses we stop robot

arm

• Timer should overflow N times where N = 8000000/65536 = 122 times =

7AH (122 decimal)

Microcontrollers and Applications

61

• After 16 seconds the timer count should be overflow 122 times and

should

have output count of 8000000 -122*65536 =4608=1200H

• During first ISR1 when M1=FF disable interrupts and load OC register.

Now enable interrupts

• Now robot arm is started during first ISR1. Since timer is free running it

would have advanced to a value x. Hence for 16 second calculation x

should be added to 1200H I.E. 16 seconds will be completed after timer

reaches the value x+1200H. Put the value x+1200 in OC register

• In subsequent ISR1 increment M1 and check if it 7AH, if not enable

further overflow interrupts and return. If Yes, disable further interrupts

and stop the timer

• In ISR2 check M1 if it is 7AH stop robot arm and disable OC interrupt,

else,

 just return after enabling OC interrupt

 4.5 Input capture with free running counter

• Input event occurring at a particular time instant is noted by reading

output of free running counter and putting the value in a separate

register called input capture register

• Can be used for noting time of occurrence of any event. You can also find

time interval between two events

• Time can be noted either at positive transition of event or negative

transition or both

 4.6 Sequence of steps to find time taken by weight lifter in lifting the weight

• Assumptions

o ISR3 executed on timer overflow. It updates M1 to keep track of

overflows

o ISR4 executed on input capture interrupt. It captures counts into a

register

Microcontrollers and Applications

62

o Assume M1 is an 8 bit location. M2 & M3 are two separate 16 bit

locations. M2 & M3 are reset to 0

o M1 = FFH indicates initial condition

o Enabled timer at input capture interrupts

o ISR3, increments M1 and enables overflow interrupt if M1 is not

equal to FFH. Else, mask further interrupts (IC interrupts)

o ISR4, if M2 = OOH store IC 1, 16 bits at M2. Enable further

interrupts

o ISR4, on next ICI interrupt, if M3 = OOH store IC2 as 16 bits of

M3.

Mask IC and overflow interrupts
o At M2 & M3 we have 16 bit values X&Y

o M1+1 (because initial value of M1 was FF) will give number of over

flows. M1 is 8 bit value

o Now time interval = (M3-M2)*2ms. If number of overflows is 0. If it

is not 0 then time interval = [{FFFFH+1-M2}+Number of

overflows*216+M3]

4.7 Real time clock interrupts (RTCs)

• Real time clock interrupts are generated by using free running timer or

counter with a known clock signal

• The time never stops and cannot be reset or preloaded

• The input clock can be pre scaled by a factor, 1,4,8,16 etc . Pre scaling

means division of the clock

• RTCs will initiate an ISR which can be used to maintain system time

continuously. After updating timing information it enables next RTC

interrupt. ISR Can also be used to perform a specific task

• Operating System can use these interrupts to initiate number of the tasks

in a sequence

4.8 RTC interrupt in 68HC11 micro controller

• 68HC11 has got a 13 bit real time counter

• Input to this is E-CLOCK which is normally 2mhz

• A pair of bits RTR0-RTR1 in PACTL decides pre-scaling factor R. R can be

1,2,4 or 8. Hence the time period can be set as R*4096microsecond so it

will be

4.096 or 8.192 or 16.384 or 32.768ms

• The bit 6 of the masked register TMASK 2.6 is used to enable real time

 interrupt

• Real time interrupt flag (RTIF) is bit 6 of TFLAG register (TFLAG2.6)

• RTC interrupt vector address if FFF0H-FFF1H

Microcontrollers and Applications

63

4.9 REAL TIME CLOCK INTERRUPTS USING OUTPUT COMPARE (IF RTC

FEATURE IS NOT THERE THEN OC FEATURE CAN BE USED AS IN 80X96)

• Output compare register is compared with output of free running counter

• Interrupts are generated on successful comparison. These are called OC

interrupts

• ISR maintains system time in memory location which is updated on every

OC interrupt. It also enables next OC interrupt

• After successive intervals RTC OC interrupts will be generated

• 80X96 microcontroller has this feature. It has timer 1 which is 16 bit free

running counter clocked internally at 1.66microsecond for a Fosc of

16MHZ

4.10 DIFFERENCE BETWEEN REAL TIME CLOCK INTERRUPT USING TIMERS

AND OC WITH FREE RUNNING COUNTER

• Timer based RTC interrupts depend on 2n*R*T and hence some specific

value

 of R. Here R is a pre-scalar and width of the timer and T is input clock
period

• In 68HC11 N=13, R=1,2,4 or 8

• In OC based RTC interrupt, interrupts can be programmed with any value

i.e.

 X and intervals at which interrupts occur will be X*T where T is input clock
period to free running counter and X is between 0 and 65536

4.11 SOFTWARE TIMERS

• Software timers are similar to real time clock

• Software timer is used to generate interrupt at certain instance. The instance

is when a specific count value (software) stored in CAM is compared with a

specific free running timer

• The interrupt flag is a bit of an addressable register

• A vector address is assigned for SWT interrupt

• ISR maintains memory location for time updates

• Specific task can be run after memory location reaches a certain value

• These memory locations are CAM locations. Each location of CAM contains

16 bit values for comparison with timer and few other N bits for commands.

In 80X96 23 bit entries are used

4.12 DIFFERENCE BETWEEN SOFTWARE TIMER INTERRUPT AND OTHER

RTC INTERRUPTS

• RTC interrupt occurs after R*213*P*T. Where P is fixed or program within

specific clock periods and R is programmed at any instant

Microcontrollers and Applications

64

• SWT interrupt is where timer shows the count value = X. Where X can be

defined

at any instant and it can have any value between 0 and 65536

• Similarly software timer defers from over flow interrupt in the sense that it

has a distinct vector address when an ISR is initiated after equality of specific

count

value and out of timer. Whereas overflow interrupt occurs only after 216*P*T
where P is fixed in 80X96 and T is the duration of clock pulse. P is
programmable in 68 HC11. Software timer can be defined on quick
successions by defining different count values.

• Software defers from output compare interrupt in the sense that OC

interrupt initiates an ISR where an output bit is set or reset for external

control. Where as

in software timer interrupt ISR executes or initiates a specific user task

4.13 INTERRUPT INTERVAL AND DENSITY CONSTRAINTS

• Let T intv is the interrupt interval between successive interrupt events

• Let T I be the interrupt service period for Ith interrupt

• T I = T initial + T execution + T end

• Now T I / T intv is the fraction of time spent in a interrupt service

• T initial = Initial actions like disabling interrupts, save CPU registers on the

stack

• T end = T end actions like reassigning priorities, re-enabling interrupts and

retrieving CPU registers

• T execution or T exec is the time taken by the current ISR. If critical region is there

then it should be added to it

• For N interrupts, Interrupt density = i=n E i=1 T I / T intv . So interrupt density

 depends on sum of ratios of all ISR execution times and their interval of
occurrences

• Interrupt constraint means that interrupt density should be less than 1.

Hence T I should be as low as possible

• T inst is the time taken by the current instruction during which interrupt

occurred. DIV instruction normally takes the longest time

• T enwait is the time during which interrupt remains disabled. It is actually

waiting

 for enabling the interrupts. For Eg waiting for critical region to be over. It may
 also include the execution time of current ISR.

• Interrupt latency when no other higher priority than the present one is

pending is given below:

o T lat = T inst + T enwait + T end + T init

o T end is relevant when you are waiting for current ISR to be over

• Interrupt latency when other higher interrupt than present one is pending is

given below:

o T lat = T inst + T enwait + T init + T end + T h

Microcontrollers and Applications

65

o T h is the time for initializing, execution time and ending of each of

higher interrupts than the present priority interrupts

• As an example assume that a service routine is executing an instruction of 3

micro second when the interrupt event occurs. The initial terminating actions
before the execution of task related instruction starts take 1 micro second.

Initial actions in ISR takes 10 micro second. Now the worst case latency
period when there are other 3 higher priority interrupts pending which can
take 80 micro second, 40 micro second, 100 micro second respectively

o T inst = 3 micro second

o T end = 1 micro second

o T init = 10 microsecond

o T lat (worst case) = T inst + (3 + 10+ 1 + 80) + (10+ 1 + 40) + (10 + 1 +

100)

o T lat for highest priority routine = 3 + 10

o T lat for second highest priority routine = 3+10+1+80

o T lat for third highest priority routine = (3 +10 + 1 + 80) + (10 + 1 + 40)

4.1 4 EXAMPLES ON TIMERS RELATED ACTIVITIES

• 8BIT timer receiving input pulses at 4 Microsec interval. Find preload value

so

that it times out after 100microsecond. 100Microsecond/4Microsecond = 25, it
should overflow after 25 pulses. So preload value should be (256-25) =
231=E7H

• In above example if input is 1MicroscaledSec then it should be prescaled by a

 factor of 4 so that P*T = 4Microsec therefore P=4 since T=1. This is assuming
that preload value is (256-25) i.e. overflow after 25 pulses

• In 8051 prescale factor is not there interrupt has to be generated after

100Microsecond , the following program has to be written

▪ Assume FOSC = 12MHZ

Clock to timer is fOSC/12 = 1MHZ
Hence pulse width = 1Microsec
Now timer zero to overflow after 100 pulse. So load (256-100) as preload

value i.e.156 or 9CH.

o Program timer 0 in mode 3 so that TL0 and TH0 can be used as 2

independent 8 bit timers use TL0 here

o Load TL0 with 9C

o Enable timers 0 for overflow interrupt

o Run timer by setting TR0

o Program

MOV TL0,#9CH
MOV TMOD,#03H
MOV IE,#82H
SETB TR0

 Notes
1. If timer has to be reloaded. Stop timer and reload and start again

Microcontrollers and Applications

66

2. If timer is used in auto reload mode. No need to reload, stop or start

• Spindle rotates as per windspeed. After each rotation a pulse is generated. 8

bit timer overflows in 20 seconds – find spindle speed in RPM

▪ 20 seconds = 256rotations as timer overflows after 256 pulse

and

each pulse is after one rotation.

Therefore 1 rotation = 20/256 =10/128 seconds
 OR
In one second 128/10 rotations takes place
Hence in one minute 128/10 * 60 or 768 rotations take place
Hence RPM = 768

NOTE: Timer is used as counter for above purpose.
Let us assume that spindle makes 25 rotations/minute if wind

speed is 1kmph (25RPM =1kmph i.e. if wind speed is 1kmph
spindle will make 25 rotation per minute)

Then what is wind speed if spindle makes 768 rotations per
minute. Now observed wind speed = 768/25=30.7kmph

i.e. if spindle speed is 25 rpm wind speed = 1kmph
hence if spindle speed is 768 wind speed = ?
768/25 = 20.7kmph

o EXAMPLE

Move a robotic arm for 1024.P.T.second

1. Load timer 1 with (216-1024). First start robotic arm by sending an

out bit=1. Start timer 1 by setting TR1=1. On interrupt from T1

after overflow that is after 1024.P.T seconds send out bit = 0 to

stop robotic arm

2. Now if we have to move robotic arm after (4*216 + 1024).P.T

seconds.

 Now after first overflow don’t send a 0 bit to stop robotic arm. It

should stop after 5th overflow. So timer is programmed without
auto reload capacity. If P.T. = 8Microsec i.e. P=8, T=1, then total
time elapsed will be (4*65536 + 1024) * 8 = 2.1seconds

PROGRAM
▪ Reset Timer

▪ Initialize TMOD,TL0,TH0

▪ Enable interrupt

▪ Run timer

▪ CLR P1.0 (Take action)

▪ Self Loop (Wait for interrupt)

• ISR

Microcontrollers and Applications

67

o INC M1

o CJNE M1,#N,EXIT

o SETB P1.1

o RETI

o EXIT: SETB TR0

o RETI

3. Using 2 timers find revolutions per second in a motor

• Use 16-bit timer T0 as a counter with an initial

value=0=X

• Use 16-bit timer T1 as timer with initial value = Y

• T1 will overflow after (216-Y).P.T seconds

• Read output of T0. It gives a count of N

1 count = 1 revolution so N counts = N revolutions

• N revolution = (216-Y).P.T seconds therefore 1 second =

N/(216--Y).P.T revolution

PROGRAM
▪ Timer 0

• Reset timer 0

• Use timer 0 in mode 1 as counter

• Initialize timer 0 (TL0,TH0)

• Run timer 0

▪ Timer 1

• Reset timer 1

• Use timer 1 in mode 1 as timer

• Initialize time 1 with y (TL0,TH0)

• Enable interrupt

• Run timer 1

• Self loop

▪ ISR for timer 1

• sStop timer 1

• Increment M, check if M = 0, if yes read timer 0

• Store TL0,TH0 in memory (This gives you

revolution/second)

4. Switch OFF and ON a heater after 15 seconds using timer which is

not free running assume 8051

a. Let FOSC = 12 MHZ

Therefore input to timer 0=1Microsec
Therefore it overflows after 65536Microsec
65536 Microsec = 1 overflow
15*106 Microsec = ?

Microcontrollers and Applications

68

Total number of overflows = 15*106/65536

Here quotient = overflows
15*106/65536 = quotient * 216+remainder
Therefore remainder to be preloaded in the beginning and no. of

overflows will be = the quotient

Watchdog timer:
A Watchdog Timer is a circuit that automatically invokes a reset unless the system being watched sends regular

hold-off signals to the Watchdog.

Watchdog Circuit To make sure that a particular program is executing properly the Watchdog circuit is used. For

instance the program may reset a particular flip-flop periodically. And the flip-flop is set by an external circuit.

Suppose the flip-flop is not reset for long time it can be known by using external hardware. This will indicate that

the program is not executed properly and hence an exception or interrupt can be generated. Watch Dog

Timer(WDT) provides a unique clock, which is independent of any external clock. When the WDT is enabled, a

counter starts at 00 and increments by 1 until it reaches FF. When it goes from FF to 00 (which is FF + 1) then the

processor will be reset or an exception will be generated. The only way to stop the WDT from resetting the

processor or generating an exception or interrupt is to periodically reset the WDT back to 00 throughout the

program. If the program gets stuck for some reason, then the WDT will not be set. The WDT will then reset or

interrupt the processor. An interrupt service routine will be invoked to take into account the erroneous operation of

the program. (getting stuck or going into infinite loop).

Microcontrollers and Applications

69

Microcontrollers and Applications

70

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 71

 UNIT 5

What is Switch Bouncing?

When we press a pushbutton or toggle switch or a micro switch, two metal parts come into contact to short the

supply. But they don’t connect instantly but the metal parts connect and disconnect several times before the actual

stable connection is made. The same thing happens while releasing the button. This results the false triggering or

multiple triggering like the button is pressed multiple times. Its like falling a bouncing ball from a height and it

keeps bouncing on the surface, until it comes at rest.

Simply, we can say that the switch bouncing is the non-ideal behavior of any switch which generates multiple

transitions of a single input. Switch bouncing is not a major problem when we deal with the power circuits, but it

cause problems while we are dealing with the logic or digital circuits. Hence, to remove the bouncing from the

circuit Switch Debouncing Circuit is used.

What is Software Debouncing?

Debouncing occurs in software also, while programming programmers add delays to get rid of software debouncing.

Adding a delay force the controller to stop for a particular time period, but adding delays is not a good option into

the program, as it pause the program and increase the processing time. The best way is to use interrupts in the code

for software bouncing. Arduino have code to prevent the software bouncing.

Switch Debouncing Methods

First, we will demonstrate the circuit without the switch debounce.

You can also see the waveform in oscilloscope while push button in bouncing. It shows that how much bouncing

has occurred during the switching of the pushbutton.

There are three commonly used methods to prevent the circuit from switch bouncing.

▪ Hardware Debouncing

▪ RC Debouncing

https://circuitdigest.com/digital-electronics
https://playground.arduino.cc/Learning/SoftwareDebounce

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 72

▪ Switch Debouncing IC

1. Hardware Debouncing

In the hardware debouncing technique we use an S-R flip flop to prevent the circuit from switch bounces. This is the

best debouncing method among all.

Components Required

▪ Nand Gate IC 74HC00

▪ Toggle Switch

▪ Resistor (10k -2nos.)

▪ Capacitor (0.1uf)

▪ LED

▪ Breadboard

Circuit Diagram

Working of the Hardware Debounce Circuit

The circuit is consists of two Nand gates (74HC00 IC) forming a SR flip flop. As you can see in the circuit diagram

whenever the toggle switches to the A side the output logic gets ‘HIGH’. Here, we have used an oscilloscope to

detect the bouncing. And, as you can see in the waveform given below, the logic is shifting with a slight curve rather

than bouncing. The resistors used in the circuit are pull-up resistors.

Whenever, the switch is moving between the contacts to create the bounce, the flip flop maintains the output because

the ‘0’ is fed back from the output of the Nand gates.

2. R-C Debouncing

The R-C is defined by its name only, the circuit used a RC network for the protection from switch bounce. The

capacitor in the circuit filter the instant changes in the switching signal. When the switch is in open state the voltage

across the capacitor remain zero. Initially, when the switch is open the capacitor charge through the R1 and R2

resistor.

When the switch is closed the capacitor starts discharging to zero hence the voltage at input terminal of the inverting

Schmitt trigger is zero, so the output becomes HIGH.

https://circuitdigest.com/electronic-circuits/sr-flip-flop-circuit-using-nand-gates
https://circuitdigest.com/electronic-circuits/nand-gate-circuit-diagram
https://circuitdigest.com/electronic-circuits/sr-flip-flop-circuit-using-nand-gates
https://circuitdigest.com/tutorial/pull-up-and-pull-down-resistor

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 73

In the bouncing condition, the capacitor stops the voltage at Vin until it reaches to Vcc or Ground. To increase the

speed of RC debouncing we can connect a diode as shown in the below image. Thus, it reduces the charging time of

the capacitor.

3. Switch Debouncing IC

There are ICs available in market for switch debouncing. Some of the debouncing ICs are MAX6816, MC14490,

and LS118.Below is the circuit diagram for switch debouncing using MAX6818.

Interfacing LED with 8051 Microcontroller

Light Emitting Diodes or LEDs are the mostly commonly used components in many applications. They are made of

semiconducting material. In this, It describe about basics of Interfacing LED with 8051 Microcontroller. Principle

behind Interfacing LED with 8051.The main principle of this circuit is to interface LEDs to the 8051 family micro

controller. Commonly, used LEDs will have voltage drop of 1.7v and current of 10mA to glow at full intensity. This

is applied through the output pin of the micro controller.

In this circuit, LEDs are connected to the port P0. The controller is connected with external crystal oscillator to pin

18 and 19 pins. Crystal pins are connected to the ground through capacitors of 33pf.

How to Control LEDs?

https://www.electronicshub.org/led-interfacing-8051/
https://www.electronicshub.org/led-interfacing-8051/

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 74

Light Emitting Diodes are the semi conductor light sources. Commonly used LEDs will have a cut-off voltage of

1.7V and current of 10mA. When an LED is applied with its required voltage and current it glows with full

intensity.

The Light Emitting Diode is similar to the normal PN diode but it emits energy in the form of light. The color of

light depends on the band gap of the semiconductor. The following figure shows “how an LED glows?”

Thus, LED is connected to the AT89C51 microcontroller with the help of a current limiting resistor. The value of

this resistor is calculated using the following formula.

R= (V-1.7)/10mA, where V is the input voltage.

Generally, microcontrollers output a maximum voltage of 5V. Thus, the value of resistor calculated for this is 330

Ohms. This resistor can be connected to either the cathode or the anode of the LED.

Interfacing 16×2 LCD with 8051

We use LCD display for the messages for more interactive way to operate the system or displaying error messages

etc. interfacing LCD to microcontroller is very easy if you understanding the working of LCD

LCD display is an inevitable part in almost all embedded projects and this article is about interfacing a 16×2 LCD

with 8051 microcontroller. Many guys find it hard to interface LCD module with the 8051 but the fact is that if you

learn it properly, its a very easy job and by knowing it you can easily design embedded projects like digital voltmeter

/ ammeter, digital clock, home automation displays, status indicator display, digital code locks, digital

speedometer/ odometer, display for music players etc etc. Thoroughly going through this article will make you able

to display any text (including the extended characters) on any part of the 16×2 display screen. In order to understand

the interfacing first you have to know about the 16×2 LCD module.

16×2 LCD module.

16×2 LCD module is a very common type of LCD module that is used in 8051 based embedded projects. It consists

of 16 rows and 2 columns of 5×7 or 5×8 LCD dot matrices. The module were are talking about here is type number

JHD162A which is a very popular one . It is available in a 16 pin package with back light ,contrast adjustment

function and each dot matrix has 5×8 dot resolution. The pin numbers, their name and corresponding functions are

shown in the table below.

Pin No: Name Function

http://www.circuitstoday.com/a-note-on-character-lcd-displays
http://www.circuitstoday.com/8051-microcontroller
http://www.circuitstoday.com/digital-door-lock-password-based-security-8051
http://www.circuitstoday.com/digital-tachometer-using-8051
http://www.circuitstoday.com/digital-tachometer-using-8051

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 75

1 VSS This pin must be connected to the ground

2 VCC Positive supply voltage pin (5V DC)

3 VEE Contrast adjustment

4 RS Register selection

5 R/W Read or write

6 E Enable

7 DB0 Data

8 DB1 Data

9 DB2 Data

10 DB3 Data

11 DB4 Data

12 DB5 Data

13 DB6 Data

14 DB7 Data

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 76

15 LED+ Back light LED+

16 LED- Back light LED-

VEE pin is meant for adjusting the contrast of the LCD display and the contrast can be adjusted by varying the

voltage at this pin. This is done by connecting one end of a POT to the Vcc (5V), other end to the Ground and

connecting the center terminal (wiper) of of the POT to the VEE pin. See the circuit diagram for better understanding.

The JHD162A has two built in registers namely data register and command register. Data register is for placing the

data to be displayed , and the command register is to place the commands. The 16×2 LCD module has a set of

commands each meant for doing a particular job with the display. We will discuss in detail about the commands

later. High logic at the RS pin will select the data register and Low logic at the RS pin will select the command

register. If we make the RS pin high and the put a data in the 8 bit data line (DB0 to DB7) , the LCD module

will recognize it as a data to be displayed . If we make RS pin low and put a data on the data line, the module will

recognize it as a command.

R/W pin is meant for selecting between read and write modes. High level at this pin enables read mode and low

level at this pin enables write mode.

E pin is for enabling the module. A high to low transition at this pin will enable the module.

DB0 to DB7 are the data pins. The data to be displayed and the command instructions are placed on these pins.

LED+ is the anode of the back light LED and this pin must be connected to Vcc through a suitable series current

limiting resistor. LED- is the cathode of the back light LED and this pin must be connected to ground.

16×2 LCD module commands.

16×2 LCD module has a set of preset command instructions. Each command will make the module to do a

particular task. The commonly used commands and their function are given in the table below.

Command Function

0F LCD ON, Cursor ON, Cursor blinking ON

01 Clear screen

02 Return home

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 77

04 Decrement cursor

06 Increment cursor

0E Display ON ,Cursor blinking OFF

80 Force cursor to the beginning of 1st line

C0 Force cursor to the beginning of 2nd line

38 Use 2 lines and 5×7 matrix

83 Cursor line 1 position 3

3C Activate second line

08 Display OFF, Cursor OFF

C1 Jump to second line, position1

OC Display ON, Cursor OFF

C1 Jump to second line, position1

C2 Jump to second line, position2

LCD initialization.

The steps that has to be done for initializing the LCD display is given below and these steps are common for

almost all applications.

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 78

• Send 38H to the 8 bit data line for initialization

• Send 0FH for making LCD ON, cursor ON and cursor blinking ON.

• Send 06H for incrementing cursor position.

• Send 01H for clearing the display and return the cursor.

Sending data to the LCD.

The steps for sending data to the LCD module is given below. I have already said that the LCD module has pins

namely RS, R/W and E. It is the logic state of these pins that make the module to determine whether a given data

input is a command or data to be displayed.

• Make R/W low.

• Make RS=0 if data byte is a command and make RS=1 if the data byte is a data to be displayed.

• Place data byte on the data register.

• Pulse E from high to low.

• Repeat above steps for sending another data.

Circuit diagram.

The circuit diagram given above shows how to interface a 16×2 LCD module with AT89S1 microcontroller.

Capacitor C3, resistor R3 and push button switch S1 forms the reset circuitry. Ceramic capacitors C1,C2 and

crystal X1 is related to the clock circuitry which produces the system clock frequency. P1.0 to P1.7 pins of the

microcontroller is connected to the DB0 to DB7 pins of the module respectively and through this route the data

goes to the LCD module. P3.3, P3.4 and P3.5 are connected to the E, R/W, RS pins of the microcontroller and

through this route the control signals are transffered to the LCD module. Resistor R1 limits the current through the

back light LED and so do the back light intensity. POT R2 is used for adjusting the contrast of the display.

Program for interfacing LCD to 8051 microcontroller is shown below.

Program.

MOV A,#38H // Use 2 lines and 5x7 matrix

ACALL CMND

MOV A,#0FH // LCD ON, cursor ON, cursor blinking ON

ACALL CMND

MOV A,#01H //Clear screen

ACALL CMND

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 79

MOV A,#06H //Increment cursor

ACALL CMND

MOV A,#82H //Cursor line one , position 2

ACALL CMND

MOV A,#3CH //Activate second line

ACALL CMND

MOV A,#49D

ACALL DISP

MOV A,#54D

ACALL DISP

MOV A,#88D

ACALL DISP

MOV A,#50D

ACALL DISP

MOV A,#32D

ACALL DISP

MOV A,#76D

ACALL DISP

MOV A,#67D

ACALL DISP

MOV A,#68D

ACALL DISP

MOV A,#0C1H //Jump to second line, position 1

ACALL CMND

MOV A,#67D

ACALL DISP

MOV A,#73D

ACALL DISP

MOV A,#82D

ACALL DISP

MOV A,#67D

ACALL DISP

MOV A,#85D

ACALL DISP

MOV A,#73D

ACALL DISP

MOV A,#84D

ACALL DISP

MOV A,#83D

ACALL DISP

MOV A,#84D

ACALL DISP

MOV A,#79D

ACALL DISP

MOV A,#68D

ACALL DISP

MOV A,#65D

ACALL DISP

MOV A,#89D

ACALL DISP

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 80

HERE: SJMP HERE

CMND: MOV P1,A

CLR P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DISP:MOV P1,A

SETB P3.5

CLR P3.4

SETB P3.3

CLR P3.3

ACALL DELY

RET

DELY: CLR P3.3

CLR P3.5

SETB P3.4

MOV P1,#0FFh

SETB P3.3

MOV A,P1

JB ACC.7,DELY

CLR P3.3

CLR P3.4

RET

END

Subroutine CMND sets the logic of the RS, R/W, E pins of the LCD module so that the module recognizes the

input data (given to DB0 to DB7) as a command.Subroutine DISP sets the logic of the RS, R/W, E pins of the

module so that the module recognizes the input data as a data to be displayed .

Interfacing LCD Module to 8051 in 4 Bit Mode (using only 4 pins of a port)

The microcontroller like 8051 has only limited number of GPIO pins (GPIO – general purpose input output). So to

design complex projects we need sufficient number of I/O pins . An LCD module can be interfaced with a

microcontroller either in 8 bit mode (as seen above) or in 4 bit mode. 8 bit mode is the conventional mode which

uses 8 data lines and RS, R/W, E pins for functioning. However 4 bit mode uses only 4 data lines along with the

control pins. This will saves the number of GPIO pins needed for other purpose.

Objectives

• Interface an LCD with 8051 in 4 bit mode

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 81

• Use a single port of the microcontroller for both data and control lines of the LCD.

LCD Module to 8051 – 4 Bit Mode

As shown in the circuit diagram, port 0 of the controller is used for interfacing it with LCD module. In 4 bit mode

only 4 lines D4-D7, along with RS, R/W and E pins are used. This will save us 4 pins of our controller which we

might employ it for other purpose. Here we only need to write to the LCD module. So the R/W pin can be ground it

as shown in the schematic diagram. In this way the total number of pins can be reduced to 6. In 4 Bit mode the data

bytes are split into two four bits and are transferred in the form of a nibble. The data transmission to a LCD is

performed by assigning logic states to the control pins RS and E. The reset circuit, oscillator circuit and power supply

need to be provided for the proper working of the circuit.

Program – Interface LCD Module to 8051 – 4 Bit Mode

RS EQU P0.4

EN EQU P0.5

PORT EQU P0

U EQU 30H

L EQU 31H

ORG 000H

MOV DPTR,#INIT_COMMANDS

ACALL LCD_CMD

MOV DPTR,#LINE1

ACALL LCD_CMD

MOV DPTR,#TEXT1

ACALL LCD_DISP

MOV DPTR,#LINE2

ACALL LCD_CMD

MOV DPTR,#TEXT2

ACALL LCD_DISP

SJMP $

SPLITER: MOV L,A

ANL L,#00FH

SWAP A

ANL A,#00FH

MOV U,A

http://www.circuitstoday.com/wp-content/uploads/2012/06/LCD_4bit.jpg

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 82

RET

MOVE: ANL PORT,#0F0H

ORL PORT,A

SETB EN

ACALL DELAY

CLR EN

ACALL DELAY

RET

LCD_CMD: CLR A

MOVC A,@A+DPTR

JZ EXIT2

INC DPTR

CLR RS

ACALL SPLITER

MOV A,U

ACALL MOVE

MOV A,L

ACALL MOVE

SJMP LCD_CMD

EXIT2: RET

LCD_DATA: SETB RS

ACALL SPLITER

MOV A,U

ACALL MOVE

MOV A,L

ACALL MOVE

RET

LCD_DISP: CLR A

MOVC A,@A+DPTR

JZ EXIT1

INC DPTR

ACALL LCD_DATA

SJMP LCD_DISP

EXIT1: RET

DELAY: MOV R7, #10H

L2: MOV R6,#0FH

L1: DJNZ R6, L1

DJNZ R7, L2

RET

INIT_COMMANDS: DB 20H,28H,0CH,01H,06H,80H,0

LINE1: DB 01H,06H,06H,80H,0

LINE2: DB 0C0H,0

CLEAR: DB 01H,0

TEXT1: DB " CircuitsToday ",0

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 83

TEXT2: DB "4bit Using 1Port",0

END

Interfacing hex keypad to 8051

interfacing a hex key pad to 8051 microcontroller. A clear knowledge on interfacing hex key pad to 8051 is very

essential while designing embedded system projects which requires character or numeric input or both. For example

projects like digital code lock, numeric calculator etc. Before going to the interfacing in detail, let’s have a look at

the hex keypad.

Hex keypad.

Hex key pad is essentially a collection of 16 keys arranged in the form of a 4×4 matrix. Hex key pad usually have

keys representing numerics 0 to 9 and characters A to F. The simplified diagram of a typical hex key pad is shown

in the figure below.

Hex keypad

The hex keypad has 8 communication lines namely R1, R2, R3, R4, C1, C2, C3 and C4. R1 to R4 represents the

four rows and C1 to C4 represents the four columns. When a particular key is pressed the corresponding row and

column to which the terminals of the key are connected gets shorted. For example if key 1 is pressed row R1 and

column C1 gets shorted and so on. The program identifies which key is pressed by a method known as column

scanning. In this method a particular row is kept low (other rows are kept high) and the columns are checked for

low. If a particular column is found low then that means that the key connected between that column and the

corresponding row (the row that is kept low) is been pressed. For example if row R1 is initially kept low and column

C1 is found low during scanning, that means key 1 is pressed.

Interfacing hex keypad to 8051.

The circuit diagram for demonstrating interfacing hex keypad to 8051 is shown below.Like previous 8051 projects,

AT89S51 is the microcontroller used here. The circuit will display the character/numeric pressed on a seven segment

LED display. The circuit is very simple and it uses only two ports of the microcontroller, one for the hex keypad and

the other for the seven segment LED display.

http://www.circuitstoday.com/interfacing-hex-keypad-to-8051
http://www.circuitstoday.com/wp-content/uploads/2013/03/hex-keypad.png

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 84

Interfacing hex keypad to 8051

 The hex keypad is interfaced to port 1 and seven segment LED display is interfaced to port 0 of the microcontroller.

Resistors R1 to R8 limits the current through the corresponding segments of the LED display. Capacitors C1, C2

and crystal X1 completes the clock circuitry for the microcontroller. Capacitor C3, resistor R9 and push button

switch S1 forms a debouncing reset mechanism.

Program.

ORG 00H

MOV DPTR,#LUT // moves starting address of LUT to DPTR

MOV A,#11111111B // loads A with all 1's

MOV P0,#00000000B // initializes P0 as output port

BACK:MOV P1,#11111111B // loads P1 with all 1's

 CLR P1.0 // makes row 1 low

 JB P1.4,NEXT1 // checks whether column 1 is low and jumps to NEXT1 if not low

 MOV A,#0D // loads a with 0D if column is low (that means key 1 is pressed)

 ACALL DISPLAY // calls DISPLAY subroutine

NEXT1:JB P1.5,NEXT2 // checks whether column 2 is low and so on...

 MOV A,#1D

 ACALL DISPLAY

NEXT2:JB P1.6,NEXT3

 MOV A,#2D

 ACALL DISPLAY

NEXT3:JB P1.7,NEXT4

 MOV A,#3D

 ACALL DISPLAY

NEXT4:SETB P1.0

 CLR P1.1

 JB P1.4,NEXT5

 MOV A,#4D

 ACALL DISPLAY

NEXT5:JB P1.5,NEXT6

 MOV A,#5D

 ACALL DISPLAY

NEXT6:JB P1.6,NEXT7

http://www.circuitstoday.com/wp-content/uploads/2013/03/interfacing-hex-keypad-to-8051.png

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 85

 MOV A,#6D

 ACALL DISPLAY

NEXT7:JB P1.7,NEXT8

 MOV A,#7D

 ACALL DISPLAY

NEXT8:SETB P1.1

 CLR P1.2

 JB P1.4,NEXT9

 MOV A,#8D

 ACALL DISPLAY

NEXT9:JB P1.5,NEXT10

 MOV A,#9D

 ACALL DISPLAY

NEXT10:JB P1.6,NEXT11

 MOV A,#10D

 ACALL DISPLAY

NEXT11:JB P1.7,NEXT12

 MOV A,#11D

 ACALL DISPLAY

NEXT12:SETB P1.2

 CLR P1.3

 JB P1.4,NEXT13

 MOV A,#12D

 ACALL DISPLAY

NEXT13:JB P1.5,NEXT14

 MOV A,#13D

 ACALL DISPLAY

NEXT14:JB P1.6,NEXT15

 MOV A,#14D

 ACALL DISPLAY

NEXT15:JB P1.7,BACK

 MOV A,#15D

 ACALL DISPLAY

 LJMP BACK

DISPLAY:MOVC A,@A+DPTR // gets digit drive pattern for the current key from LUT

 MOV P0,A // puts corresponding digit drive pattern into P0

 RET

LUT: DB 01100000B // Look up table starts here

 DB 11011010B

 DB 11110010B

 DB 11101110B

 DB 01100110B

 DB 10110110B

 DB 10111110B

 DB 00111110B

 DB 11100000B

 DB 11111110B

 DB 11110110B

 DB 10011100B

 DB 10011110B

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 86

 DB 11111100B

 DB 10001110B

 DB 01111010B

 END

About the program.

Firstly the program initializes port 0 as an output port by writing all 0’s to it and port 1 as an input port by writing

all 1’s to it. Then the program makes row 1 low by clearing P1.0 and scans the columns one by one for low using JB

instruction.If column C1 is found low, that means 1 is pressed and accumulator is loaded by zero and DISPLAY

subroutine is called. The display subroutine adds the content in A with the starting address of LUT stored in DPTR

and loads A with the data to which the resultant address points (using instruction MOVC A,@A+DPTR). The present

data in A will be the digit drive pattern for the current key press and this pattern is put to Port 0 for display. This way

the program scans for each key one by one and puts it on the display if it is found to be pressed.

Notes.

• The 5V DC power supply must be well regulated and filtered.

• Column scanning is not the only method to identify the key press. You can use row scanning also. In row scanning

a particular column is kept low (other columns are kept high) and the rows are tested for low using a suitable

branching instruction. If a particular row is observed low then that means that the key connected between that row

and the corresponding column (the column that is kept low) is been pressed. For example if column C1 is initially

kept low and row R1 is observed low during scanning, that means key 1 is pressed.

• A membrane type hex keypad was used during the testing. Push button switch type and dome switch type will also

work. I haven’t checked other types.

• The display used was a common cathode seven segment LED display with type number ELK5613A. This is just for

information and any general purpose common cathode 7 segment LED display will work here.

 Interfacing Seven segment display to 8051

interface a seven segment LED display to an 8051 microcontroller. 7 segment LED display is very popular and it

can display digits from 0 to 9 and quite a few characters like A, b, C, ., H, E, e, F, n, o,t,u,y, etc. Knowledge about

how to interface a seven segment display to a micro controller is very essential in designing embedded systems. A

seven segment display consists of seven LEDs arranged in the form of a squarish ‘8’ slightly inclined to the right

and a single LED as the dot character. Different characters can be displayed by selectively glowing the required LED

segments. Seven segment displays are of two types, common cathode and common anode. In common cathode type

, the cathode of all LEDs are tied together to a single terminal which is usually labeled as ‘com‘ and the anode of

all LEDs are left alone as individual pins labeled as a, b, c, d, e, f, g & h (or dot) . In common anode type, the anode

of all LEDs are tied together as a single terminal and cathodes are left alone as individual pins. The pin out scheme

and picture of a typical 7 segment LED display is shown in the image below.

7 segment LED display

Digit drive pattern.

http://www.circuitstoday.com/interfacing-seven-segment-display-to-8051
http://www.circuitstoday.com/wp-content/uploads/2012/06/7-segment-LED-display-pinout-image.png

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 87

Digit drive pattern of a seven segment LED display is simply the different logic combinations of its terminals ‘a’

to ‘h‘ in order to display different digits and characters. The common digit drive patterns (0 to 9) of a seven segment

display are shown in the table below.

Digit a b c d e f g

0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 0

2 1 1 0 1 1 0 1

3 1 1 1 1 0 0 1

4 0 1 1 0 0 1 1

5 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1

7 1 1 1 0 0 0 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

Interfacing seven segment display to 8051.

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 88

Interfacing 7 segment display to 8051

The circuit diagram shown above is of an AT89S51 microcontroller based 0 to 9 counter which has a 7 segment

LED display interfaced to it in order to display the count. This simple circuit illustrates two things. How to setup

simple 0 to 9 up counter using 8051 and more importantly how to interface a seven segment LED display to 8051

in order to display a particular result. The common cathode seven segment display D1 is connected to the Port 1 of

the microcontroller (AT89S51) as shown in the circuit diagram. R3 to R10 are current limiting resistors. S3 is the

reset switch and R2,C3 forms a debouncing circuitry. C1, C2 and X1 are related to the clock circuit. The software

part of the project has to do the following tasks.

• Form a 0 to 9 counter with a predetermined delay (around 1/2 second here).

• Convert the current count into digit drive pattern.

• Put the current digit drive pattern into a port for displaying.

All the above said tasks are accomplished by the program given below.

Program.

ORG 000H //initial starting address

START: MOV A,#00001001B // initial value of accumulator

MOV B,A

MOV R0,#0AH //Register R0 initialized as counter which counts from 10 to 0

LABEL: MOV A,B

INC A

MOV B,A

MOVC A,@A+PC // adds the byte in A to the program counters address

MOV P1,A

ACALL DELAY // calls the delay of the timer

DEC R0//Counter R0 decremented by 1

MOV A,R0 // R0 moved to accumulator to check if it is zero in next instruction.

JZ START //Checks accumulator for zero and jumps to START. Done to check if counting has been finished.

SJMP LABEL

DB 3FH // digit drive pattern for 0

DB 06H // digit drive pattern for 1

DB 5BH // digit drive pattern for 2

http://www.circuitstoday.com/wp-content/uploads/2012/06/interfacing-7-segement-display-to-8051.png

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 89

DB 4FH // digit drive pattern for 3

DB 66H // digit drive pattern for 4

DB 6DH // digit drive pattern for 5

DB 7DH // digit drive pattern for 6

DB 07H // digit drive pattern for 7

DB 7FH // digit drive pattern for 8

DB 6FH // digit drive pattern for 9

DELAY: MOV R4,#05H // subroutine for delay

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

END

About the program.

Instruction MOVC A,@A+PC is the instruction that produces the required digit drive pattern for the display.

Execution of this instruction will add the value in the accumulator A with the content of the program counter(address

of the next instruction) and will move the data present in the resultant address to A. After this the program resumes

from the line after MOVC A,@A+PC.

In the program, initial value in A is 00001001B. Execution of MOVC A,@A+PC will add oooo1001B to the

content in PC (address of next instruction). The result will be the address of label DB 3FH (line15) and the data

present in this address ie 3FH (digit drive pattern for 0) gets moved into the accumulator. Moving this pattern in the

accumulator to Port 1 will display 0 which is the first count.

At the next count, value in A will advance to 00001010 and after the execution of MOVC A,@+PC ,the value in A

will be 06H which is the digit drive pattern for 1 and this will display 1 which is the next count and this cycle gets

repeated for subsequent counts.

The reason why accumulator is loaded with 00001001B (9 in decimal) initially is that the instructions from line 9

to line 15 consumes 9 bytes in total.

The lines 15 to 24 in the program which starts with label DB can be called as a Look Up Table (LUT). label DB is

known as Define Byte – which defines a byte. This table defines the digit drive patterns for 7 segment display as

bytes (in hex format). MOVC operator fetches the byte from this table based on the result of adding PC and contents

in the accumulator.

Register B is used as a temporary storage of the initial value of the accumulator and the subsequent increments made

to accumulator to fetch each digit drive pattern one by one from the look up table(LUT).

Note:- In line 6, Accumulator is incremented by 1 each time (each loop iteration) to select the next digit drive pattern.

Since MOVC operator uses the value in A to fetch the digit drive pattern from LUT, value in ACC has to be

incremented/manipulated accordingly. The digit drive patterns are arranged consecutively in LUT.

Register R0 is used as a counter which counts from 10 down to 0. This ensures that digits from o to 9 are

continuously displayed in the 7 segment LED. You may note lines 4, 11, 12, and 13 in the above program. Line 4

initializes R0 to 10 (OAh). When the program counter reaches line 11 for the first time, 7 segment LED has already

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 90

displayed 0. So we can reduce one count and that is why we have written DEC Ro. We need to continuously check

if R0 has reached full count (that is 0). In order to do that lines 12 and 13 are used. We move R0 to accumulator and

then use the Jump if Zero (JZ) instruction to check if accumulator has reached zero. If Acc=0, then we makes the

program to jump to START (initial state) and hence we restart the 7 segment LED to display from 0 to 9 again. If

Acc not equal to zero, we continue the program to display the next digit (check line 14).

Interfacing Stepper Motor with 8051

 The stepper motors coil A,B,C,D is connected to the port 1 i.e. to P1.0, P1.2, P1.2 and P1.3.

 The Microcontroller does not provide sufficient current to drive motor and to safeguard 8081 from loading

effect and burn out condition, a motor driver IC ULN 2003 between 8051 and stepper motor. ULN 2003 is a

stepper motor driver.

 The stepper motor is user for controlling:

1. Position control

2. Direction control &

3. Speed control

Stepper motors are basically two types: Unipolar and Bipolar. Unipolar stepper motor generally has five or six

wire, in which four wires are one end of four stator coils, and other end of the all four coils is tied together which

represents fifth wire, this is called common wire (common point). Generally there are two common wire, formed

by connecting one end of the two-two coils as shown in below figure. Unipolar stepper motor is very common and

popular because of its ease of use.

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 91

In Bipolar stepper motor there is just four wires coming out from two sets of coils, means there are no common

wire.

Stepper motor is made up of a stator and a rotator. Stator represents the four electromagnet coils which remain

stationary around the rotator, and rotator represents permanent magnet which rotates. Whenever the coils energised

by applying the current, the electromagnetic field is created, resulting the rotation of rotator (permanent magnet).

Coils should be energised in a particular sequence to make the rotator rotate. On the basis of this “sequence” we can

divide the working method of Unipolar stepper motor in three modes: Wave drive mode, full step drive mode and

half step drive mode.

4-Step sequence (Full Drive mode):

 In this type of functioning, the following 4 binary sequence/code are used for rotation: (Considering step angle=

1.8 degrees)

8-Step Sequence(Half Drive mode:):

 In this type of functioning, the following 8 binary sequence/code are used for rotation: (Considering step angle=

0.9degrees)

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 92

Program

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 93

Interfacing Diagram

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 94

Troubleshooting

If your motor is not rotating OR vibrating but not rotating, then you must check the following checklist:

1. First check the circuit connections and code.

2. If the circuit and code is ok, then check that the stepper motor gets proper supply voltage (generally 12v),

otherwise it just vibrate but not rotate.

3. If supply is fine, then check the four coil end points which in connected to ULN2003A. First find the two common

end points and connect them to 12v, then connect the remaining four wires to ULN2003A and try every possible

combination until motor get started. If you wouldn’t connect them in proper order then the motor just vibrate

instead of rotating.

Interfacing DC Motor with 8051 Microcontroller

The main purpose of DC interfacing with 8051 microcontroller is for controlling the speed of the motor. The DC

motor is an electrical machine with a rotating part termed as a rotor which has to be controlled. For example, consider

the DC motor whose speed or direction of rotation of DC motor can be controlled using programming techniques

which can be achieved by interfacing with 8051 microcontroller. So, in this article let us discuss about interfacing

DC motor with 8051 microcontroller.

Motor Driver IC used for Interfacing DC motor with 8051

Here, interfacing 8051 with DC motor requires a motor driver. There are various types of driver ICs among which

L293D is typically used for interfacing DC motor with 8051. L293 is an IC with 16 pins which are represented in

the figure below.

Motor Driver IC L293D used for Interfacing DC

This L293 IC is having ratings of 600mA per channel and DC supply voltage in the range of 4.5V to 36V.

These ICs can be protected from inductive spikes by connecting higher speed clamp diodes internally. This 16

pin L293D IC can be used for controlling the direction of two DC motors. The IC L293D works based on the

H-bridge concept. The voltage can be made to flow in either direction using this circuit (H-bridge) such that

https://www.elprocus.com/types-interfacing-devices-applications-with-microcontroller/
https://www.elprocus.com/h-bridge-motor-control-circuit-using-l293d-ic/
https://www.elprocus.com/h-bridge-motor-control-circuit-using-l293d-ic/
https://www.elprocus.com/wp-content/uploads/2015/06/Interfacing-DC-Motor-with-8051-Microcontroller.jpg
https://www.elprocus.com/wp-content/uploads/2015/06/Motor-Driver-IC-L293D-used-for-Interfacing-DC-motor-with-8051.jpg

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 95

by changing the voltage direction the motor direction can be changed.

Bi directional DC motor using 8051.

This describes a bidirectional DC motor that changes its direction automatically after a preset amount of

time (around 1S). AT89S51 is the microcontroller used here and L293 forms the motor driver. Circuit diagram is

shown above

In the circuit components R1, S1 and C3 forms a debouncing reset circuitry. C1, C2 and X1 are related to the

oscillator. Port pins P1.0 and P1.1 are connected to the corresponding input pins of the L293 motor driver. The motor

is connected across output pins 3 and 6 of the L293. The software is so written that the logic combinations of P1.0

and P1.1 controls the direction of the motor. Initially when power is switched ON, P1.0 will be high and P1.1 will

be low. This condition is maintained for a preset amount of time (around 1S) and for this time the motor will be

running in the clockwise direction (refer the function table of L293). Then the logic of P1.0 and P1.1 are swapped

and this condition is also maintained for the same duration . This makes the motor to run in the anti clockwise

direction for the same duration and the entire cycle is repeated.

Progr am.

ORG 00H // initial starting address

MAIN: MOV P1,#00000001B // motor runs clockwise

ACALL DELAY // calls the 1S DELAY

MOV P1,#00000010B // motor runs anti clockwise

ACALL DELAY // calls the 1S DELAY

SJMP MAIN // jumps to label MAIN for repaeting the cycle

DELAY: MOV R4,#0FH

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

END

Notes.

The maximum current capacity of L293 is 600mA/channel. So do not use a motor that consumes more than that.

The supply voltage range of L293 is between 4.5 and 36V DC. So you can use a motor falling in that range.

Microcontrollers 4 Sem ECE

Saneesh Cleatus Thundiyil

BMS Institute of Technology, Bangalore – 64 96

